
A Sound Type System for the Meta Language of the
JavaScript Standard

Pedro José Fernandes Nunes

Thesis to obtain the Master of Science Degree in

Applied Mathematics

Supervisor(s): Prof. Paulo Mateus
Prof. José Fragoso Santos

Examination Committee

Chairperson: Pedro Resende
Supervisor: José Fragoso Santos

Member of the Committee: Ana Matos

December 2021

ii

Acknowledgments

I would like to thank both my supervisors, especially, Prof. José Fragoso Santos, for all the weekends

spent helping me. If not for his support this thesis would certainly not have been concluded.

Also, I would like to thank my parents for their huge emotional and financial support and my friends

for their humour which kept me cheered up.

Last but not least, I would also like to thank my boss for all the flexibility provided, enabling me to

successfully complete my thesis.

iii

iv

Resumo

JavaScript é a linguagem de programação mais utilizada para scripting do lado do cliente na world

wide web e tem também ganho popularidade em outros tipos de aplicações através de Node.js. A com-

plexidade da semântica do JavaScript torna-a um alvo difı́cil para análise estática. Consequentemente

e de forma a auxiliar a análise e especificação de programas em JavaScript, foi desenvolvida uma nova

linguagem intermédia não tipada denominada ECMA-SL. Nesta tese introduzimos a Typed ECMA-SL,

uma versão tipada da ECMA-SL, juntamente com um sistema de tipos sensı́vel ao fluxo para a lin-

guagem. Definimos ainda duas semânticas operacionais, uma de grande passo e outra de pequeno

passo, para a Typed ECMA-SL e provámos a correção do sistema de tipos proposto com respeito a

ambas as semânticas.

Palavras-chave: JavaScript, Sistemas de Tipos, Sensibilidade ao Fluxo, Correção de Tipos

v

vi

Abstract

JavaScript is the programming language most commonly used for client-side scripting in the world

wide web and has been gaining popularity for other types of applications via Node.js. The complexity of

the JavaScript semantics makes it a hard target for static analyses. Thus, a new intermediate untyped

language named ECMA-SL was developed to assist with the analysis and specification of JavaScript

programs. In this thesis, we introduce Typed ECMA-SL, a typed version of ECMA-SL, together with a

flow-sensitive type system for the language. We further define a big-step and a small-step operational

semantics for Typed ECMA-SL and prove the soundness of the proposed type system with respect to

both semantics.

Keywords: JavaScript, Type Systems, Flow-sensitivity, Type Soundness

vii

viii

Contents

Acknowledgments . iii

Abstract . vii

List of Tables . xi

List of Figures . xi

1 Introduction 1

1.1 Thesis Outline . 3

2 Typed ECMA-SL 5

2.1 Syntax . 5

2.2 Type System . 7

3 Big-Step Soundness 13

3.1 ECMA-SL State Properties . 13

3.1.1 State Satisfiability . 13

3.1.2 No-aliasing Invariant . 15

3.2 Big-Step Semantics . 16

3.3 Soundness - Type Safety . 19

3.3.1 Preservation of the NAOO Invariant . 19

3.3.2 Well-Typed Expressions . 20

3.3.3 Satisfiability Preservation . 21

3.3.4 Soundness - Type Safety . 23

3.4 Soundness - Fault Avoidance . 29

3.4.1 Error Executions . 29

3.4.2 Soundness - Fault Avoidance . 31

3.5 Function and Return . 33

4 Small-Step Soundness 37

4.1 Small-Step Semantics . 37

4.2 Soundness - Preservation . 39

4.3 Soundness - Progress . 46

4.4 Function and Return . 50

ix

4.4.1 Semantics . 50

4.4.2 Semantic Properties . 52

4.4.3 Soundness . 54

5 Related Work 59

6 Conclusions 69

6.1 Future Work . 70

Bibliography 71

A Satisfiability Preservation Lemmas 75

A.1 Field Update . 75

A.2 Field Delete . 78

A.3 Object Creation . 80

A.4 Object Closing . 82

B Other Lemmas 84

x

List of Figures

2.1 Typed ECMA-SL Syntax . 6

2.2 Typing Rules for Expressions: Γ ` e : τ . 8

2.3 Typing Rules for Statements: f,∆ ` {Γ1} s {Γ2} . 9

3.1 Difficulty posed by aliasing . 16

3.2 Big-step semantics for expressions JeKρ , v . 16

3.3 Big-step semantics for statements: 〈Σ, h, ρ, s〉 ⇓i 〈Σ′, h′, ρ′〉 17

3.4 Relation between lemmas and theorems for the proof of Type Safety 24

3.5 Big-Step semantics for statements - erroneous executions: 〈Σ, h, ρ, s〉 ⇓i E 30

3.6 Big-Step semantics for statements - function call: 〈Σ, h, ρ, s〉 ⇓i 〈Σ′, h′, ρ′, o〉 34

4.1 Small-Step semantics for statements: 〈Σ, h, ρ, s〉 →i 〈Σ′, h′, ρ′, s′〉 38

4.2 Small-Step semantics for statements - function call: 〈g,Σ, h, ρ, cs, s〉 →i 〈g′,Σ′, h′, ρ′, cs′, s′〉 51

xi

xii

Chapter 1

Introduction

JavaScript is the programming language most commonly used for client-side scripting in the world

wide web [1] and has been gaining increasingly popularity for other types of applications via Node.js [2], a

run-time environment for developing stand-alone JavaScript applications built on top of the V8 JavaScript

engine [3]. In order to guarantee that JavaScript programs behave consistently throughout all existing

browsers, the Ecma International association develops and maintains the JavaScript standard, a long

complex document written in English, about one thousand pages long, describing both the syntax and

semantics of the JavaScript language. The complexity of the JavaScript semantics makes it a hard target

for static analyses, which, in order to be sound, have to reason about all the corner cases described in

the official standard.

The standard way to deal with the complexity of real world programming languages when designing

new program analyses is to first compile the given program to a simpler intermediate language and

then apply the analysis at the intermediate language level. Following this approach, a research team at

INESC-ID developed ECMA-SL, a new intermediate language for JavaScript analysis and specification.

The ECMA-SL project [4] comes with a compiler from JavaScript to ECMA-SL, thereby allowing new

static analyses for JavaScript to target ECMA-SL instead of JavaScript directly. ECMA-SL is a simple

untyped imperative language with extensible objects and standard control flow constructs. In contrast to

the semantics of JavaScript which is about 1000 pages long, the semantics of ECMA-SL can be formally

described in one page, making it a suitable target for static analysis.

Currently the ECMA-SL project supports ECMAScript 5, the 5th version [5] of the JavaScript stan-

dard, which is now in its 12th version [6] (ECMAScript 12). The ECMA-SL project has at its core an

ECMAScript 5 interpreter written in ECMA-SL called ECMARef5 [7], which consists of more than 10K

lines of ECMA-SL code. In order to adapt the ECMA-SL project to the more recent versions of the

ECMAScript standard, one has to adapt and extend the ECMARef5 interpreter. This is by no means

an easy task as the size and complexity of the standard grew substantially since its 5th version. Fur-

thermore, the fact that ECMA-SL is untyped makes any sort of refactoring of the existing code base

extremely error prone and time consuming. For this reason, the aim of this project is to streamline the

management and maintenance of the ECMARef interpreter by adding a type system to ECMA-SL.

1

A type system is a syntactic method for checking the absence of certain classes of errors in programs

by classifying the given program’s statements and expressions according to the kinds of values that it

computes. Typically, a type system is defined as a set of rules, with each rule applying to a specific

phrase of the language. These rules target type errors such as an operand or argument passed to a

function being incompatible with the type expected by that operator or function. Ideally, type systems

are supposed to be sound : if a sound type system accepts a program, then there are no inputs for

which the execution of that program throws a runtime error. In order to guarantee soundness, type

systems have to be conservative, meaning that they have to reject not only incorrect programs but also

correct programs that cannot be proven so. We say that a type system is more precise than another

if the former rejects fewer correct programs than the latter. In practice, there is a trade-off between

precision and complexity of type annotations. The more precise a type system is, the more complex

and unwieldy are its corresponding type annotations. Hence, in general, more precise type systems

are more difficult to use. In order to avoid this trade-off, some type systems are purposely designed to

be unsound with the goal of rejecting as few correct programs as possible whilst not having an overly

complex notational burden.

Much like JavaScript, ECMA-SL is a highly dynamic programming language, including features such

as extensible objects and dynamic binding of function calls, which make it a hard target for standard type

systems. In particular, the combination of aliasing with object mutability is difficult to control if one wants

to keep the type system both sound and precise. The goal of this thesis is to formalise a typed version of

ECMA-SL, named Typed ECMA-SL, together with a type system with the two following characteristics:

• Soundness: well-typed programs cannot go wrong;

• Flow-Sensitivity: program variables and objects are allowed to change their types during execution.

Flow-sensitivity is key for precision, allowing us to keep our type system as little restrictive as possible.

The key idea of our type system is to explicitly track object aliasing and constrain object mutation. In

particular, objects are only allowed to be mutated if there is a single pointer to them.

With the gaining popularity of JavaScript, many industrial and academic research groups have de-

veloped type systems for different fragments of the language [8–10]. As ECMA-SL and JavaScript have

many common features, one would expect that one of the proposed type systems for JavaScript could be

applied to ECMA-SL. This is, however, not the case as none of these systems meets our requirements;

some of them are explicitly unsound [8], some are flow-insensitive [9], and others are overly complex

due to features of JavaScript that are not included in ECMA-SL [10] such as prototype inheritance.

We consider this thesis to have three contributions: first, the formalisation of the Typed ECMA-SL

language; second, the development of a type system based on a novel idea - open/closed types for

tracking aliasing; finally, two soundness proofs written with respect to two different operational semantics.

Below, we briefly describe each of these contributions.

Typed ECMA-SL The first contribution of this work is the definition of Typed ECMA-SL, a typed version

of ECMA-SL. In order to facilitate the transition for developers, Typed ECMA-SL was designed to be as

2

similar to ECMA-SL as possible, thus minimizing the number of extra annotations required.

Type System The developed type system is the central contribution of this thesis as it not only provides

a set of rules for supporting the development of correct programs, but also presents a novel idea which

can be adapted to other object-oriented scripting languages: open/closed objects. This idea, which is at

the core of our type system, is key for allowing it to be flow-sensitive, while keeping it sound.

Soundness Proofs We provide two soundness proofs for our type system. In order to do this we

introduce two different semantics: a big-step semantics [11] and a small-step semantics [12]. By proving

the soundness of our type system we ensure that well-typed programs cannot go wrong, which was one

of our type system’s requirements. We chose to provide two different proofs to explore different trade-offs

between clarity and expressivity.

1.1 Thesis Outline

This thesis starts by introducing, in Chapter 2, Typed ECMA-SL, our typed version of ECMA-SL. In

this Chapter we cover the syntax of the language, comparing it against its untyped version and pre-

senting our type system for it. We end this chapter with two examples that help understanding our type

system and the ideas behind it. The two following Chapters, Chapter 3 and Chapter 4, are similar in their

structure. They start by introducing some preliminary definitions and each semantics in scope (big-step

semantics for Chapter 3 and small-step semantics for Chapter 4). Afterwards, we present their respec-

tive soundness theorems and associated lemmas. We end both Chapters by extending our semantics

and soundness proofs with the function call and return statements. In Chapter 5, we give an overview of

the related work, comparing our type system against the existing type systems for JavaScript. Chapter 6

draws some conclusions about our work and points out some future research directions.

3

4

Chapter 2

Typed ECMA-SL

ECMA-SL is a simple imperative language with extensible objects developed to assist with JavaScript

analysis and specification. The ECMA-SL language was used to develop ECMARef, a new JavaScript

reference interpreter that follows the ECMAScript standard [5], the official JavaScript standard, faithfully.

The ECMA-SL project has been developed by a research team at INESC-ID and has been thoroughly

tested against Test262 [13], the official ECMAScript conformance suite.

So far, ECMA-SL is an untyped language and, therefore, it has two major disadvantages when

compared to typed languages. Firstly, a typed language allows for the static detection of code errors.

Secondly, programs written in untyped languages are harder to maintain than typed languages, which

promote a design-by-contract approach to the software development process, with function signatures

acting as a clear interface between the code of the corresponding functions and the programs that use

them. This project contributes to the overall ECMA-SL project by designing a new typed version of

ECMA-SL, which mitigates these two defects.

In this chapter, we introduce our typed version of ECMA-SL, called Typed ECMA-SL, together with

its type system. The chapter is structured into two sections. Section 2.1 describes the syntax of Typed

ECMA-SL, highlighting the differences with respect to untyped ECMA-SL. Section 2.2 describes the type

system using illustrative examples to explain its main constraints.

2.1 Syntax

A Typed ECMA-SL program p ∈ Progs is a collection of Typed ECMA-SL functions. A Typed ECMA-

SL function f ∈ Funcs is of the form function f(x1 : τ1, ..., xn : τn){s}, where f is the identifier, x1, ..., xn

are the function formal parameters with types τ1, ..., τn, and s is the body of the function. The syntax of

Typed ECMA-SL is given in Figure 2.1, mostly coinciding with that of untyped ECMA-SL.

Expressions Typed ECMA-SL expressions include literals, variables and a variety of unary and binary

operators. Literals might be booleans, strings or numbers.

5

Expressions Statements Types
e ∈ E ::= x s ∈ S ::= x := e τ ∈ T ::= number
| v | x.p := e | string
| ⊕(e) | x := e.p | boolean
| ⊗(e1, e2) | x := {} | null

| commit(x) | undefined
⊗ ∈ {+, x,−, ...} | delete(x.p) | {pi : τi|ni=1}◦

| skip | {pi : τi|ni=1}•
v ∈ V ::= true | s1; s2 | (τ1, ..., τn)→ τ
| false | if(e){s1} else {s2}
| n ∈ N | while(e){s}
| string | x := f(e1, ..., en)

| return(e)

Figure 2.1: Typed ECMA-SL Syntax

Statements Typed ECMA-SL statements include:

• the standard control flow statements: if, while, sequence, function call, and return;

• a variable assignment statement;

• statements for interacting with extensible objects: object creation, field lookup, field deletion, and

field assignment;

• a special statement commit to provide information to the type system, which will be discussed later

in the section.

Typed vs Untyped ECMA-SL The main differences between Typed ECMA-SL and ECMA-SL are the

following:

1. Function parameters must be annotated with their corresponding types.

2. The syntax is extended with a special statement commit to provide information to the type system.

3. We restrict field look-ups, deletions, and assignments to require the name of the field to appear

statically. For instance, we do not support the JavaScript syntax o[x], where x is a program variable

that denotes the name of the field being inspected; instead, we only have the syntax o.p, where p

is exactly the name of the field being inspected.

4. Functions calls are fully static; that is, the identifier of the function to be called must be known at

static time. In contrast, in untyped ECMA-SL, that identifier can be computed dynamically.

Types Typed ECMA-SL includes three main categories of types: primitive types, function types, and

object types. Primitive types comprise the string type, the number type, the boolean type, and the special

6

undefined and null types. Function types have their standard interpretation; the type (τ1, ..., τn) → τ is

the type of the functions that take arguments of types τ1, ..., τn and produce a result of type τ . Object

types are more complicated. The object type {pi : τi|ni=1}∗ denotes objects that only contain the fields

p1 to pn, mapping each field pi to a value of type τi. Given an object type τ = {pi : τi|ni=1}∗, we write

dom(τ) to mean the set of fields that it contains: {pi |ni=1} and bτc to refer to its openness flag, ∗.

We have two classes of object types: open object types, {pi : τi|ni=1}◦, and closed object types,

{pi : τi|ni=1}•. If an object has an open object type, it is referred to as an open object, and, if not, a

closed object. Only open objects can be extended or shrank during execution, meaning that we can

only add new fields or delete existing fields to/from open objects. The domain of a closed object is not

allowed to change during execution and the types of its fields must remain the same. When an object

is created, it is assumed to be open. After populating an object with all the fields that it should contain,

the programmer must close it using the commit statement. Closing an object is essential if one intends

to assign it to other variables, as our type system enforces that only closed objects can be referenced

by more than one pointer. This behaviour is exemplified in the code snippet below:

1 x := {};

2 x.f:= 5 + 5;

3 commit(x);

4 y := x

By using the commit statement, x sees its type changing from {f : number}◦ to {f : number}•, making

the object closed, and thus, unable to have its type further changed. If we were to remove the commit

statement from line 3, we would render the assignment of x to y in line 4 illegal, as it would create a

second reference to an open object.

2.2 Type System

Before proceeding to the definition of the type system, some preliminary definitions are required. In

particular, we make use of store typing environments to associate each program variable with its cor-

responding type, and global typing contexts to associate each function identifier with the corresponding

function type. The formal definitions are given below. We also introduce the notion of intersection of

store typing environments in order to combine two store typing environments into a new one.

Definition 1 (Store Typing Environment). A store typing environment is a function Γ : V ar 7→ T mapping

variables in V ar to types in T.

Definition 2 (Γ u Γ′). The intersection of two store typing environments, Γ and Γ′, denoted Γ u Γ′ :

V ar 7→ T, is defined as:

Γ u Γ′(x) =

Γ(x), if Γ(x) = Γ′(x)

⊥, otherwise

Definition 3 (Global Typing Context). A global typing context is a partial function ∆ : F ⇀ T mapping

function identifiers in the set of all function identifiers F to function types in T.

7

VARIABLE
τ = Γ(x)

Γ ` x : τ

VALUE
Type(v) = τ

Γ ` v : τ

UNARY OPERATION
Γ ` e : τe ⊕ (τe) = τ

Γ ` ⊕(e) : τ

BINARY OPERATION
Γ ` e1 : τe1 Γ ` e2 : τe2 ⊗ (τe1 , τe2) = τ

Γ ` ⊗(e1, e2) : τ

Figure 2.2: Typing Rules for Expressions: Γ ` e : τ

Typing Rules for Expressions Given a store typing environment Γ, an expression e and a type τ it

is said that Γ types the expression e with type τ , written Γ ` e : τ as long as there is a derivation for it

according to the rules defined in Figure 2.2. The rules there presented are explained below.

[VARIABLE] A store typing environment Γ types a variable x with type τ when the image of x in Γ is τ .

[VALUE] A store typing environment Γ types a value v with type τ when the type of v is in fact τ .

[UNARY OPERATION] A store typing environment Γ types a unary operation ⊕(τe) = τ with type τ when

Γ types e with type τe and the operation ⊕ over a type τe leads to a type τ .

[BINARY OPERATION] A store typing environment Γ types a binary operation ⊗(τe1 , τe2) with type τ when

Γ types e1 with type τe1 and e2 with type τe2 , and the operation ⊗ over types τe1 and τe2 leads to a type τ .

Typing Rules for Statements Given a function identifier g, a global typing context ∆, two store typing

environment Γ1 and Γ2, and a statement s, the typing judgement g,∆ ` {Γ1} s {Γ2}means that s occurs

within the body of g and that under the global typing context ∆, the execution of s on a variable store

satisfying the initial store typing environment Γ1 results in a variable store satisfying the final variable

typing environment Γ2.

The key insight of our type system is that we have to control aliasing. In particular, our type system

enforces a no aliasing policy for open objects, which guarantees that open objects can only be accessed

through a single program variable at a time. To ensure this, we do not allow open objects to be assigned

to program variables and/or object fields. Once an object is closed, such assignments are allowed. We

call this policy no aliasing for open objects (NAOO) and will discuss it thoroughly in the subsequent

chapters of this thesis. In the rules, we make use of a predicate Closed(τ) to determine whether or not

the given type τ is closed. Primitive types are treated as closed object types, meaning that Closed(τ)

also holds when τ is a primitive type.

We are now at the position of describing the typing rules of our type system. These rules are given

in Figure 2.3 and explained below.

[SKIP] Skip is always typable under all contexts and does not change the store typing environment.

[ASSIGNMENT] The rule first types the expression e being assigned, obtaining the type τe. It then checks

that τe is closed in order to enforce the NAOO policy. Finally, it updates the type of x in the store typing

environment to τe.

8

SKIP

g,∆ ` {Γ} skip {Γ}

VAR ASSIGNMENT
Γ ` e : τe Closed(τe)

g,∆ ` {Γ} x := e {Γ[x 7→ τe]}

FIELD LOOKUP
Γ ` e : {fi : τi|ki=1, f : τ}∗ Closed(τ)

g,∆ ` {Γ} x := e.f {Γ[x 7→ τ]}

NEW OBJECT

g,∆ ` {Γ} x := {} {Γ[x 7→ {}◦]}

FIELD ASSIGNMENT - OPEN EXIST

Γ ` e : τe Γ(x) = {fi : τi|ki=1}◦ ∃j∈{1,...,k}f = fj Closed(τe)

g,∆ ` {Γ} x.f := e {Γ[x 7→ {fi : τi|ki=1,i6=j , f : τe}◦]}

FIELD ASSIGNMENT - OPEN NON EXIST

Γ ` e : τe Γ(x) = {fi : τi|ki=1}◦ ∀i∈{1,...,k}f 6= fi Closed(τe)

g,∆ ` {Γ} x.f := e {Γ[x 7→ {fi : τi|ki=1, f : τe}◦]}

FIELD ASSIGNMENT - CLOSE
Γ ` e : τe Γ(x) = {..., f : τf , ...}• τe = τf Closed(τe)

g,∆ ` {Γ} x.f := e {Γ}

FIELD DELETE
Γ(x) = {fi : τi|ki=1}◦ ∃j∈{1,...,k}f = fj

g,∆ ` {Γ} delete(x.f) {Γ[x 7→ {fi : τi|ki=1,i6=j}◦]}

COMMIT

Γ(x) = {fi : τi|ki=1}◦

g,∆ ` {Γ} commit(x) {Γ[x 7→ {fi : τi|ki=1}•]}

IF
Γ ` e : bool g,∆ ` {Γ0} s1 {Γ1} g,∆ ` {Γ0} s2 {Γ2}

g,∆ ` {Γ0} if(e){s1} else {s2} {Γ1 u Γ2}

WHILE
Γ ` e : bool g,∆ ` {Γ} s {Γ}
g,∆ ` {Γ} while(e){s} {Γ}

SEQUENCING
g,∆ ` {Γ0} s1 {Γ1} g,∆ ` {Γ1} s1 {Γ2}

g,∆ ` {Γ0} s1; s2 {Γ2}

FUNCTION CALL
Γ ` ei : τi|ni=1 ∆(f) = (τ1, ..., τn) 7→ τ Closed(τi)|ni=1

g,∆ ` {Γ} x := f(e|ni=1) {Γ[x 7→ τ]}

RETURN
∆(g) = (τ1, ..., τn) 7→ τ Γ ` e : τ

g,∆ ` {Γ} return(e) {Γ}

Figure 2.3: Typing Rules for Statements: f,∆ ` {Γ1} s {Γ2}

9

[ASSIGNMENT FROM FIELD] This rule is applied when assigning the value of an object field to a program

variable. The rule first types the expression e that evaluates to the object being inspected and obtains

the type τ of its field f . Then, it checks that τ is closed in order to maintain the NAOO invariant. Finally,

the type of x is updated to τ in the store typing environment.

[NEW OBJECT] The new object statement is typable under all contexts, changing the type of x to {}◦.

[FIELD ASSIGNMENT OPEN EXIST] This rule is applied when assigning a closed value to an already

existent field of an open object. The rule first types the expression e being assigned, obtaining the type

τe, and checks if the latter is closed. Then, it checks if the object to which e is being assigned is open

and the field to be assigned, f , is already contained in the object’s fields, fi = f for some i. If so, the

type of x is updated in the store typing environment so that the field f is mapped to τe.

[FIELD ASSIGNMENT OPEN NON EXIST] This rule is applied when assigning a closed value to a new

field of an open object. The rule first types the expression e being assigned, obtaining the type τe, and

checks if the latter is closed. Then, it checks if the object to which e is being assigned is open and the

field to be assigned, f , is different from the existing fields. If so, the type of x is updated in the store

typing environment so that it additionally maps the new field f to type τe.

[FIELD ASSIGNMENT CLOSE] This rule is applied when assigning a closed value to a field of a closed

object. The rule first types the expression e being assigned, obtaining the type τe, and checks if the

latter is closed. Then, it checks if the object to which e is assigned is also closed and obtains the type

τf corresponding to the field being assigned. Finally, it checks if τe coincides with τf , leaving the store

typing environment unchanged.

[FIELD DELETE] This rule is applied when deleting an existing field from an open object. The rule first

checks if the programming variable x binds an open object and if that object has the field f . Finally, it

updates the type of x in the store typing environment by removing the deleted field f .

[COMMIT] This rule is applied when closing an open object. The rule checks if the programming variable

x binds an open object and, if so, it closes the type of x.

[IF] This rule is applied to an if statement. The rule first checks that the expression e guarding the if has

type boolean. Then, it types both the then- branch and the else branch of the if statement, obtaining

two final typing environments Γ1 and Γ2. Finally, resulting store typing environment is set to be the

intersection of Γ1 and Γ2.

[WHILE] This rule is applied to a while statement. The rule first checks that the expression e guarding

the while has type boolean. Then, it types the body of the while, checking that the resulting store

typing environment precisely coincides with the starting one and leaving the store typing environment

unchanged.

[SEQUENCING] This rule is applied to a sequencing statement s1; s2. The rule first types s1 obtaining a

new store typing environment Γ1 and then types s2 starting from Γ1 and obtaining a new store typing

environment Γ2.

10

[FUNCTION CALL] This rule is applied to a function call statements. The rule first types the arguments

of the function call, ei|ni=1, additionally checking that they are all closed. Then, it sets the type of x in the

store typing environment to the return type of the function.

[RETURN] This rule is applied to return statements. The rule types the expression being returned and

checks if the obtained type coincides with the return type of the function g that contains the current return

statement.

Typing functions A function function f(x1 : τ1, ..., xn : τn){s} is said to be typable under the global

typing context ∆, written ∆ ` function f(x1 : τ1, ..., xn : τn){s}, if its body is typable with respect to the

typing environment obtained by mapping its formal parameters to their respective types. This concept is

formally defined below.

Γ = [x1 7→ τ1, ..., xn 7→ τn] ∆(f) = (τ1, ..., τn)→ τ f,∆ ` {Γ}s{Γ′}

∆ ` function f(x1 : τ1, ..., xn : τn){s}

A program p is said to be typable under a global typing context ∆, written ∆ ` p, if all functions in

the range of the program are typable with respect to ∆. The notation ∆r(f) is used to refer to the return

type of f .

Typable and Non-Typable Examples Let us consider the two following code snippets, respectively

showing a typable and a non-typable program. As the left program is typable, we can find a type

derivation that witnesses its typability.
1 x := {};

2 x.f:= 5 + 5;

3 commit(x);

4 x.f:=2; // Typable

1 x := {};

2 x.f:= 5 + 5;

3 commit(x);

4 x.f:="test"; // Non-typable

1 x := {};

2 x.f:= 5 + 5;

3 x.f:="test";

4 commit(x);// Typable

To show that the left-hand side program is typable we start by applying the sequencing rule. After

this, we apply the new object rule which has no associated constraints and updates the store typing

environment, mapping the type of x to {}◦. Below, we present the type derivation for this program, de-

noting the statement presented in line j as sj and omitting, for the moment, the sub-tree corresponding

to the statement s2; s3; s4, which is denoted by A.

g,∆ ` {} x := {} {[x, {}◦]}
A

g,∆ ` {} s1; s2; s3; s4 {[x : {f : number}•]}

Let us now consider the type derivation A. The sequencing rule is again applied and is followed by

the field assignment open non exist rule. This last rule can be applied as our expression 5 + 5 has type

number which is a primitive type and therefore closed, x is an open object as checked by the store typing

11

environment and f is not yet a field of x, thus the type of x is updated in our store typing environment

to {f : number}◦. Below, we present the type derivation for this program, omitting for the moment, the

sub-tree corresponding to the statement s3; s4, which is denoted by B.

A
g,∆ ` {[x : {}◦]} x.f := 5 + 5 {[x, {f : number}◦]}

B

g,∆ ` {[x : {}◦]} s2; s3; s4 {[x : {f : number}•]}

Finally, let us consider the type derivation B. Once again the sequencing rule is applied. Given that

x is an open object, the commit rule can be applied and it becomes closed, which means that its type

is updated to {f : number}• in the store typing environment. Lastly, we apply the field assignment

close rule, given that 2 and x.f have the same closed type, number, and x binds a closed object. The

derivation B is shown below in which we use num as an equivalent to the type number.

g,∆ ` {[x : {f : num}◦]} commit(x) {[x : {f : num}•]} g,∆ ` {[x : {f : num}•]} x.f := 2 {[x : {f : num}•]}

g,∆ ` {[x : {}◦]} s3; s4 {[x : {f : number}•]}

In contrast, our second program is not typable as it will reach the last step with the store typing

environment as (x, {f : number}•) and there is no typing rule that enables a str type to be assigned to

the field f of the closed object. As for our third program, as x is not yet closed, it does not require that

5 + 5 and ”test” to be of the same type, thus it is typable.

12

Chapter 3

Big-Step Soundness

In this chapter we prove the soundness of our type system with respect to a big-step semantics of

ECMA-SL. In Section 3.1, we start by defining state satisfiability, a relation that captures what it means

for an ECMA-SL state to satisfy a given typing environment. Then, in Section 3.2, we introduce our

big-step semantics for ECMA-SL. The main proof of soundness is finally given in Section 3.3, based on

a number of semantic properties introduced and proven in this same section.

In order to simplify the exposition, the semantics of ECMA-SL that we first present does not model

wrong executions and function calls. Sections 3.4 and 3.5 extend it to cater for these two aspects.

Importantly, by modelling wrong executions explicitly, we are able to prove an important property of our

type system: fault avoidance – that means that the execution of a well-typed program cannot generate

an error.

3.1 ECMA-SL State Properties

ECMA-SL States An ECMA-SL state is composed of a heap h : Loc × Str ⇀ V, mapping pairs of

locations and string to values, and a store ρ : V ar ⇀ V, mapping program variables to values.

Following well-established approaches for modelling the semantics of JavaScript [14, 15], instead of

modelling a heap as a function from locations to objects, objects are not explicitly represented in the

formalism. At the semantic level, an object can be seen as a region of the heap. More concretely, the

object pointed to by location l corresponds to the set of cells whose first element is l. In the following,

we write h(l) to mean {(l, f) | (l, f) ∈ dom(h)} and dom(h(l)) to mean {f | (l, f) ∈ dom(h)}.

3.1.1 State Satisfiability

In this subsection we define what it means for an ECMA-SL state to satisfy a given typing environ-

ment. To this end, we first extend the notion of typing environment to heaps, introducing the concept of

heap typing environment and then give the formal definition of state satisfiability.

13

Heap Typing Environment In order to define state satisfiability we first introduce the concept of heap

typing environment which maps each heap location to the type of the object it refers to.

Definition 4 (Heap Typing Environment). A heap typing environment is a partial function Σ : Loc ⇀ T

that maps locations from the set of heap locations Loc to the set of types T.

In the following, we use Σ(l, f) to refer to the type of the field f in the object pointed to by location l.

Put formally: Σ(l, f) = τf ⇐⇒ ∃ τ. Σ(l) = τ ∧ τ = {..., f : τf , ...}∗.

State Satisfiability We define the state satisfiability relation with the help of three auxiliary satisfiability

relations:

• Value Satisfiability: describing what it means for a value v to satisfy a given type τ under a heap

typing environment Σ – written v �Σ τ ;

• Store Satisfiability: describing what it means for a store ρ to satisfy a given store typing environ-

ment Γ under a heap typing environment Σ – written ρ �Σ Γ;

• Heap Satisfiability: describing what it means for a heap to satisfy a heap typing environment –

written h � Σ.

To avoid clutter, we use the notation h, ρ � Σ,Γ to mean that h � Σ and ρ �Σ Γ.

Definition 5 (Value Satisfiability). A value v is said to satisfy a type τ with respect to a heap typing

environment Σ, written v �Σ τ , if either:

• v is a number and τ is the number type;

• v is a string and τ is the string type;

• v is true or false and τ is the boolean type;

• if v is a location l and Σ(l) = τ

For primitive values, i.e. numbers, strings and booleans, the value satisfiability relation simply checks

if the given type τ coincides with the type of the given value v, ignoring the supplied heap typing envi-

ronment; for instance, it holds that 2 �Σ number and it does not hold that 2 �Σ string. When it comes to

an object location l, value satisfiability simply requires that the supplied type τ coincides with Σ(l). Note

that value satisfiability does not make sure that the structure of the object pointed to by a location l con-

forms with the type that is assigned to that location; that is the job of the definition of heap satisfiability,

which connects the heap typing environment Σ with the actual heap h. Below, we give some additional

examples that illustrate how the value satisfiability relation works.

Number Satisfiability Location Satisfiability Location Non-Satisfiability

Any Σ Σ(l) = {age : number}• Σ(l) = {age : number}◦

6 �Σ number l �Σ {age : number}• ¬(l �Σ {age : number}•)

14

Definition 6 (Store Satisfiability). Given a heap typing environment Σ, a store ρ is said to satisfy a store

typing environment Γ, written ρ �Σ Γ, if and only if:

∀x∈dom(Γ)ρ(x) �Σ Γ(x)

Store satisfiability simply requires that the domain of the store typing environment Γ coincides with

the domain of the given store ρ and that all values in the range of ρ satisfy their types given by Γ with

respect to Σ. Notice that store satisfiability only requires the heap typing environment Σ for handling

object locations.

Definition 7 (Heap Satisfiability). A heap h is said to satisfy a heap typing environment Σ, written h � Σ,

if and only if:

• dom(h) = dom(Σ)

• ∀l∈dom(h)dom(h(l)) = dom(Σ(l))

• ∀l∈dom(h)∀f∈dom(h(l))h(l, f) �Σ Σ(l, f)

Heap satisfiability requires that: (1) the domain of the heap coincides with the domain of the heap

typing environment; (2) for each location in the heap, the fields stored in that location coincide with the

fields contained in the corresponding object type (for instance, if location l contains the fields f1 and f2,

its type must also declare the fields f1 and f2); (3) the value of each field of each object contained in the

heap satisfies its corresponding type given by Σ.

3.1.2 No-aliasing Invariant

As stated before, in order to deal with aliasing and mutation, our type system enforces a simple

invariant: only closed objects can be referenced by more than one pointer. We formalise this invariant

as the state property given in the definition below.

Definition 8 (No Aliasing for Open Objects). A heap h, a store ρ and a heap typing environment Σ are

said to satisfy the no aliasing for open objects (NAOO) property, written NAOO(h, ρ,Σ), if and only if:

• ∀l∈dom(Σ) bΣ(l)c = ◦ ⇒ ¬∃(l′,f) : h(l′, f) = l NAOO1

• ∀l∈dom(Σ) bΣ(l)c = ◦ ⇒ ¬∃x1,x2 x1 6= x2 ∧ ρ(x1) = ρ(x2) = l NAOO2

Essentially the no aliasing for open objects (NAOO) property states that an open object can only be

referenced by a single program variable; this means that: (1) it cannot be referenced by an object field

(NAOO1) and (2) it cannot be referenced by two distinct program variables x1 and x2 (NAOO2).

Essentially, our type system enforces that objects can only be mutated if they are open, meaning that

there is a single reference pointing to them. This guarantees that object mutation does not cause the type

of a given reference (variable or object field) to become inconsistent with the type of its corresponding

value. To better understand why this is the case, let us consider the object diagram given in Figure 3.1.

15

Figure 3.1: Difficulty posed by aliasing

Initially, we have two variables x and y pointing to an object with a single field age with value 86 of

type number. Therefore, if not for the distinction between open and closed types, both x and y would

have type {age : number}. Suppose now that we set the value of age to undefined via the assignment

x.age := undefined. In this case, for the type system to be sound, both the types of x and y must be set

to {age : undefined}. However, that would require keeping track of all aliases of every program variable

and object field at every program point, which is not tractable in practice. Instead, we only allow an

object to be mutated if we can prove that there is a single reference pointing to it, thereby avoiding this

type of inconsistency.

3.2 Big-Step Semantics

In this section we define a big-step semantics for ECMA-SL statements, ignoring for now function

calls and erroneous executions. Our semantics for statements makes use of a simple big-step seman-

tics for ECMA-SL expressions given in the figure below, where we use the notation JeKρ to mean the

evaluation of the expression e in the store ρ. Note that, given that ECMA-SL expressions do not interact

with the object heap, the semantics of expressions only depends on the variable store.

VARIABLE

JxKρ , ρ(x)
VALUE

JvKρ , v
UNARY OPERATION

J⊕(e)Kρ , ⊕(JeKρ)
BINARY OPERATION

J⊗(e1, e2)Kρ , ⊗(Je1Kρ, Je2Kρ)

Figure 3.2: Big-step semantics for expressions JeKρ , v

Expression evaluation is straightforward:

• a variable x evaluates to the value to which it is mapped by the variable store;

• a value v evaluates to itself;

• to evaluate a unary operator expression ⊕(e), the semantics first evaluates the argument expres-

sion e and then applies the semantic function corresponding to the given unary operator to the

obtained value;

16

SKIP

〈Σ, h, ρ, skip〉 ⇓i 〈Σ, h, ρ〉

VAR ASSIGNMENT
v = JeKρ ClosedΣ(v)

〈Σ, h, ρ, x := e〉 ⇓i 〈Σ, h, ρ[x 7→ v]〉

FIELD LOOKUP
JeKρ = l h(l, f) = v ClosedΣ(v)

〈Σ, h, ρ, x := e.f〉 ⇓i 〈Σ, h, ρ[x 7→ v]〉

NEW OBJECT
l /∈ dom(h) Σ′ = Σ[l 7→ {}◦] h′ = h[l 7→ {}]

〈Σ, h, ρ, x := {}〉 ⇓i 〈Σ′, h′, ρ[x 7→ l]〉

FIELD ASSIGNMENT - OPEN
JeKρ = v JxKρ = l τ = TypeΣ(v) bΣ(l)c = ◦ Σ′ = Σ[l 7→ Σ(l)[f 7→ τ]] ClosedΣ(v)

〈Σ, h, ρ, x.f := e〉 ⇓i 〈Σ′, h[(l, f) 7→ v], ρ〉

FIELD ASSIGNMENT - CLOSE
JeKρ = v JxKρ = l Σ(l, f) = TypeΣ(v) bΣ(l)c = • (l, f) ∈ dom(h) ClosedΣ(v)

〈Σ, h, ρ, x.f := e〉 ⇓i 〈Σ, h[(l, f) 7→ v], ρ〉

FIELD DELETE
JxKρ = l bΣ(l)c = ◦

〈Σ, h, ρ, delete(x.f)〉 ⇓i 〈Σ\(l, f), h\(l, f), ρ〉

COMMIT
JxKρ = l bΣ(l)c = ◦

〈Σ, h, ρ, commit(x)〉 ⇓i 〈Σ[l 7→ Σ(l)•], h, ρ〉

IF-TRUE
JeKρ = true 〈Σ, h, ρ, s1〉 ⇓i 〈Σ′, h′, ρ′〉
〈Σ, h, ρ, if(e){s1} else {s2}〉 ⇓i 〈Σ′, h′, ρ′〉

IF-FALSE
JeKρ = false 〈Σ, h, ρ, s2〉 ⇓i 〈Σ′, h′, ρ′〉
〈Σ, h, ρ, if(e){s1} else {s2}〉 ⇓i 〈Σ′, h′, ρ′〉

WHILE
〈Σ, h, ρ, if(e){s;while(e){s}} else {skip}〉 ⇓i 〈Σ′, h′, ρ′〉

〈Σ, h, ρ,while(e){s}〉 ⇓i 〈Σ′, h′, ρ′〉

SEQUENCING
〈Σ, h, ρ, s1〉 ⇓i 〈Σ1, h1, ρ1〉 〈Σ1, h1, ρ1, s2〉 ⇓i 〈Σ2, h2, ρ2〉

〈Σ, h, ρ, s1; s2〉 ⇓i 〈Σ2, h2, ρ2〉

Figure 3.3: Big-step semantics for statements: 〈Σ, h, ρ, s〉 ⇓i 〈Σ′, h′, ρ′〉

• to evaluate a binary operator expression ⊗(e1, e2), the semantics first evaluates the argument

expressions e1 and e2 and then applies the semantic function corresponding to the given binary

operator to the obtained values.

We are now at the position to define our semantic judgement for statements, which has the form

〈Σ, h, ρ, s〉 ⇓i 〈Σ′, h′, ρ′〉, meaning that the evaluation of the statement s in the heap h and store ρ results

in the heap h′ and store ρ′. In order to reason about the types of the objects in the heap, we have to

instrument the semantics to keep track of the types of the objects created at runtime. To this end, the

semantic judgement for statements additionally include the initial and final heap typing environments,

respectively Σ and Σ′. The semantic rules are given in Figure 3.3.

The proposed semantics enforces the no aliasing for open objects (NAOO) invariant. To this end,

before every assignment, the semantics checks if the value being assigned is either a primitive value

or a closed object; only in such cases is the assignment allowed to go through. To avoid clutter, we

introduce the predicate ClosedΣ(v) to mean that v is either a primitive value or a closed object.

17

Definition 9 (Closed Values). Let Σ be a heap typing environment, a value v is said to be of a closed

with respect to Σ, written ClosedΣ(v), if and only if it is of a primitive type or if bΣ(v)c = •.

The semantic rules are explained below:

[SKIP] The skip transition is always possible and leaves the heap typing environment, heap and store

unchanged.

[VAR ASSIGNMENT] This rule is used when a closed value is being assigned to a program variable. The

rule first evaluates the expression e obtaining the value v, which is then assigned to the variable x in the

store ρ.

[FIELD LOOKUP] This rule is applied when assigning a closed value from an object field to a program

variable. The rule first evaluates the expression e obtaining the object location l. Then, it obtains the

value v associated with the field f in the object pointed to by l and updates the value of the variable x to

v in the store ρ.

[NEW OBJECT] This rule is applied when assigning a new object to a variable x. The rule finds a

location l which is not in the domain of the heap and adds such location to both heap and heap typing

environment, mapping it to an empty object and to an empty open object type, respectively. The rule

also maps x to l in the store.

[FIELD ASSIGNMENT - OPEN] This rule is applied when assigning a closed value to a field of an open

object. The rule first evaluates the expression e obtaining the value v, and the location l of the pro-

gram variable x. Then, it updates the field f being modified and its type in the heap and heap typing

environment, respectively.

[FIELD ASSIGNMENT - CLOSE] This rule is applied when assigning a closed value to a field of a close

object. The rule first evaluates the expression e obtaining the value v, and the location l of the program

variable x. Then, it verifies if the already existing field f of l has the same type as v and, if so, it updates

the value of the field f to v in the heap h.

[FIELD DELETE] This rule is applied when deleting a field from an open object. The rule first obtains the

location l of the program variable x. Then it removes the pair (l, f) from the domain of both heap and

heap typing environment.

[COMMIT] This rule is applied when closing an open object. The rule first obtains the location l of the

program variable x. Afterwards it updates the type associated with the location l to a closed type in the

store typing environment Σ.

[IF-TRUE] This rule is applied when evaluating an if statement and its associated boolean expression

evaluates to true. The rule delegates the work to another transition which has as statement the then

branch. The final heap typing environment, heap and store are the ones obtained through the support

transition.

[IF-FALSE] This rule is applied when evaluating an if statement and its associated boolean expression

evaluates to false. The rule delegates the work to another transition which has as statement the else

18

branch. The final heap typing environment, heap and store are the ones obtained through the support

transition.

[WHILE] This rule is applied when evaluating a while statement. The rule simply delegates the work to

another transition which has a conditional statement with the original condition. The then branch is the

sequencing of the body of the while followed by the while statement itself and the else branch is simply

the skip statement. The resulting heap typing environment, heap and store are the same as the ones

obtained through this supporting transition.

[SEQUENCING] The rule is used to evaluate a sequence of two statements s1; s2. The rule first evaluates

the statement s1, obtaining the heap typing environment Σ1, heap h1, and store ρ1. The rule next

evaluates the statement s2 on Σ1, h1 and ρ1, obtaining the heap typing environment Σ2, heap h2, and

store ρ2.

3.3 Soundness - Type Safety

In this section we prove the first soundness property of the proposed type system: type safety. We

prove that our type system satisfies this property with respect to the operational semantics defined in

Section 3.2. Essentially, we say that our type system is safe in that the execution of a typed statement

preserves state satisfiability. More formally, if a statement s is typable with respect to a given function

g, typing context ∆ and store typing environments Γ and Γ′, i.e. g,∆ ` {Γ} s {Γ′}, and if one executes

s in a state (h, ρ) such that h, ρ � Σ,Γ, for a given heap typing environment Σ, then if the execution

terminates, it will do so in a state satisfying the final heap and store typing environments; put formally:

(g,∆ ` {Γ} s {Γ′} ∧ h, ρ � Σ,Γ ∧ 〈Σ, h, ρ, s〉 ⇓i 〈Σ′, h′, ρ′〉) ⇒ h′, ρ′ � Σ′,Γ′ (3.1)

In order to establish the safety of our type system, we make use of a number of auxiliary properties

regarding: (1) preservation of the NAOO invariant; (2) soundness of expression typing; and (3) satisfia-

bility preservation for heap and store updates. The following subsections expand on these three classes

of properties and the section concludes with the main soundness proof.

3.3.1 Preservation of the NAOO Invariant

The proposed type system enforces the NAOO invariant, which states that only closed objects can

be referenced by more than one pointer at a time. However, we do not prove that the type system

does enforce the NAOO invariant directly. Instead, we instrumented the operational semantics so that it

also enforces the NAOO invariant and will later prove that typable programs cannot be rejected by the

semantics for violating the NAOO invariant. Lemma 1 proves that the operational semantics preservers

the NAOO invariant.

Lemma 1 (NAOO Properties). Let Σ and Σ′ be heap typing environments, h and h′ heaps, ρ and ρ′

stores, and s a statement such that 〈Σ, h, ρ, s〉 ⇓i 〈Σ′, h′, ρ′〉 and NAOO(h, ρ,Σ); then it holds that

19

NAOO(h′, ρ′,Σ′).

Proof. Both NAOO properties have to be considered, therefore we segment our proof in two parts:

NAOO-I Suppose that for some location l, ∃(l′,f) : h(l′, f) = l. Then, for this to happen, there had to

be a step s = x.f := e such that JeKρ = l and JxKρ = l′. Therefore the transition rule ”field assignment

- open” had to be applied, thus bΣ(l)c = •. Moreover by rule inspection, l can not be open after being

closed. Thus, since ∃(l′,f) : h(l′, f) = l ⇒ bΣ(l)c 6= ◦. Therefore we conclude that bΣ(l)c = ◦ ⇒

¬∃(l′,f) : h(l′, f) = l.

NAOO-II Suppose that for some x1, x2 such that x1 6= x2 and l ∈ dom(Σ) we have that ρ(x1) = ρ(x2) = l.

Then, for this to happen one of the following steps had to happen for i = 1 and for i = 2:

• s1 = xi := e where JeKρ = l

• s2 = xi := e.f where JeKρ = k and k.f = l (for some location k)

• s3 = xi := {} where JxiKρ′ = l

Notice that if s1 or s2 is applied, then bΣ(l)c = •. It is also impossible to apply s3 for both x1 and x2,

since the corresponding semantic rule requires that l /∈ dom(h). Moreover, and also by rule inspection,

l can not be open after being closed. Thus, since ∃x1,x2
x1 6= x2 ∧ ρ(x1) = ρ(x2) = l ⇒ ¬bΣ(l)c = ◦, we

conclude that bΣ(l)c = ◦ ⇒ ¬∃x1,x2 x1 6= x2 ∧ ρ(x1) = ρ(x2) = l

3.3.2 Well-Typed Expressions

Our type system for statements relies on a simple type system for expressions. Unsurprisingly, in

order to establish the safety of the type system for statements, we first have to establish the safety of

our type system for expressions. To establish this, we have to prove that if an expression e is given type

τe by the type system in a store typing environment Γ and if the evaluation of e in a store ρ satisfying Γ

yields a value v; then, the value v must be of type τe. Lemma 2 formally establishes this property.

Lemma 2 (Well-typed Expressions - Safety). Let e be an expression, τe a type, ρ a store, Σ a heap

typing environment and Γ store typing environment. Suppose that Γ ` e : τe, ρ �Σ Γ and JeKρ = v. Then

v �Σ τe.

Proof. Assume that Γ ` e : τe (hyp.1), ρ �Σ Γ (hyp.2) and JeKρ = v (hyp.3). Therefore we have that:

Case e is a variable x (hyp.4)

• Γ(x) = τe (1) - hyp.1 + hyp.4

• ρ(x) �Σ Γ(x) (2) - hyp.2

• ρ(x) = v (3) - hyp.3 + hyp.4

• v �Σ τe (4) - (1) + (2) + (3)

Case e is value v′ (hyp.4)

• τe = Type(v′) (1) - hyp.1 + hyp.4

• v′ = v (2) - hyp.3 + hyp.4

20

• τe = Type(v) (3) - (1) + (2)

• v �Σ τe (4) - (3)

Case e is ⊕(e′) (hyp.4)

• ∃τ ′e : Γ ` e′ : τ ′e (1) - hyp.1 + hyp.4

• ∃v′ : Je′Kρ = v′ (2) - hyp.3 + hyp.4

• v′ �Σ τ ′e (3) - (1) + (2) + hyp.2 + hyp.ind.

• +(v′) �Σ ⊕(τ ′e) (4) - (3)

• v �Σ τe (5) - (1) + (2) + (4) + hyp.4

Case e is ⊗(e1, e2) (hyp.4)

• ∃τe1 , τe2 : Γ ` e1 : τe1 and Γ ` e2 : τe2 (1) - hyp.1 + hyp.4

• ∃v1, v2 : Je1Kρ = v1 and Je2Kρ = v2 (2) - hyp.3 + hyp.4

• v1 �Σ τe1 , v2 �Σ τe2 (3) - (1) + (2) + hyp.2 + hyp.ind.

• ⊗(v1, v2) �Σ ⊗(τe1 , τe2) (4) - (3)

• v �Σ τe (5) - (1) + (2) + (4) + hyp.4

3.3.3 Satisfiability Preservation

In the following we present a number of lemmas that characterize the conditions under which updates

to the store, heap, store typing environment, and heap typing environment preserve the satisfiability

relation introduced in Section 3.1. For clarity, we group these lemmas into four groups depending on the

context in which the lemma is used: field update, field deletion, object creation, and object closing.

Field Update Regarding the update of object fields, we start with a simple lemma stating that if a

heap h satisfies a heap typing environment Σ, and one updates the field (l, f) by a value of the exact

same type of its previous value, then the updated heap continues to satisfy the original heap typing

environment.

Lemma 3 (Heap Update - Type Unchanged). Let h be a heap, l a location, f a field, τ a type and Σ a

heap typing environment. Suppose that h(l, f) �Σ τ , v′ �Σ τ , h′ = h[(l, f) 7→ v′] and h � Σ. Then h′ � Σ.

A more general version of this lemma requires additional conditions: the object being updated has to

be open and the NAOO1 property must be satisfied. This generalized version, Lemma 4, states that if

the heap h satisfies the heap typing environment Σ and the field (l, f) is updated with a closed value v

in h and with type τ in Σ, then the updated heap also satisfies the updated heap typing environment.

Lemma 4 (Heap Update). Let h and h′ be heaps, Σ and Σ′ heap typing environments, v a value, l a

location and τ a type. Suppose that h � Σ, h′ = h[(l, f) 7→ v], Σ′ = Σ[l 7→ Σ(l)[f 7→ τ]], NAOO1(h,Σ),

ClosedΣ(v), bΣ(l)c = ◦ and v �Σ τ . Then h′ � Σ′.

21

The preservation of store satisfaction is more involved. Suppose we are given a store ρ that satisfies

a store typing environment Γ with respect to a heap typing environment Σ. Then, suppose that a variable

x in the domain of ρ is bound to the location l pointing to an open object with a field f . Finally, suppose

that we update the field f of the object pointed to by l with a closed value v and also update Γ and Σ

accordingly (both Γ(x) and Σ(l) must have the type of f updated to the type of v). In this case, the

original store continues to satisfy the updated store typing environment.

Lemma 5 (Store Update). Let Σ and Σ′ be heap typing environments, Γ and Γ′ store typing environ-

ments, ρ a store, x a variable, f a field and τ a type. Suppose that ρ �Σ Γ, Σ′ = Σ[ρ(x) 7→ Σ(ρ(x))[f 7→

τ]], Γ′ = Γ[x 7→ Γ(x)[f 7→ τ]], bΣ(ρ(x))c = ◦ and NAOO2(ρ,Σ). Then ρ �Σ′ Γ′.

Field Deletion Regarding field deletion there are two lemmas to consider: heap delete and store

delete. The Heap Delete Lemma states that when a heap h satisfies a heap typing environment Σ, and

a field (l, f) is removed from both h and Σ, the resulting heap continues to satisfy the resulting heap

typing environment, as long as the location l points to an open object with respect to the updated heap

typing environment.

Lemma 6 (Heap Delete). Let h and h′ be heaps, Σ and Σ′ heap typing environments, ρ a store, l a

location and f a field. Suppose that h � Σ, h′ = h\(l, f), Σ′ = Σ\(l, f) and NAOO1(h,Σ), bΣ(l)c = ◦.

Then h′ � Σ′.

The Store Delete Lemma is a bit more involved. Suppose we are given a store ρ that satisfies a store

typing environment Γ with respect to a heap typing environment Σ. Then, suppose that a variable x in

the domain of ρ is bound to the location l pointing to an open object with a field f . Finally, suppose that

we delete the field f of the object pointed to by l and update Γ and Σ accordingly (both Γ(x) and Σ(l)

must be updated so that f is removed from their sets of fields). In this case, the original store continues

to satisfy the updated store typing environment with respect to the updated heap typing environment.

Lemma 7 (Store Delete). Let Σ and Σ′ be heap typing environments, Γ and Γ′ store typing environments,

ρ a store, x a variable and f a field. Suppose that ρ �Σ Γ, Σ′ = Σ\(ρ(x), f), Γ′ = Γ\(x, f), bΣ(ρ(x))c = ◦

and NAOO2(ρ,Σ). Then ρ �Σ′ Γ′.

Object Creation Of all the operations listed in this section, object creation is the only one that does

not require the NAOO properties. This stems from the fact that all the other operations deal with objects

that already existed before, whereas this one deals with the creation of a new object. The Heap New

Lemma states that if a heap h satisfies a heap typing environment Σ, and one creates a new object and

extends Σ with a mapping from l to an empty open object type, then the resulting heap still satisfies the

resulting heap typing environment.

Lemma 8 (Heap New). Let h and h′ be heaps, Σ and Σ′ heap typing environments and l a location.

Suppose that h � Σ, h′ = h[l 7→ {}], Σ′ = Σ[l 7→ {}◦] and l /∈ dom(h). Then h′ � Σ′.

22

Let us now consider the Store New Lemma. Suppose we are given a store ρ that satisfies a store

typing environment Γ with respect to a heap typing environment Σ. Then, suppose that one creates

a new object and assigns it to a variable x, updating Γ and Σ accordingly; both Γ and Σ must be

updated in order to respectively maps x and the newly created location to the empty object type. In this

case, the updated store satisfies the updated store typing environment with respect to the updated heap

typing environment.

Lemma 9 (Store New). Let Σ and Σ′ be heap typing environments, Γ and Γ′ store typing environments, ρ

and ρ′ stores and x a variable. Suppose that ρ �Σ Γ, ρ′ = ρ[x 7→ l], Σ′ = Σ[ρ′(x) 7→ {}◦], Γ′ = Γ[x 7→ {}◦]

and l /∈ dom(Σ). Then ρ′ �Σ′ Γ′.

Object Closing Lastly, we consider the preservation properties associated with the commit command.

The Heap Close Lemma states that if a heap h satisfies a heap typing environment Σ and one closes

the type of an open object in h by setting its openness flag to • in Σ, then the resulting heap typing

environment is still satisfied by h.

Lemma 10 (Heap Close). Let h ba a heap, Σ and Σ′ heap typing environments, ρ a store and l a

location. Suppose that h � Σ, Σ′ = Σ[l 7→ Σ(l)•], NAOO1(h,Σ) and bΣ(l)c = ◦. Then h � Σ′.

The Store Close Lemma states that when a store ρ satisfies a store typing environment Γ with respect

to a heap typing environment Σ, and there is a variable in the store which its image is of an open type,

then we might close it in both Γ and Σ and ρ still satisfies the resulting store typing environment with

respect to the resulting heap typing environment.

Lemma 11 (Store Close). Let Σ and Σ′ be heap typing environments, Γ and Γ′ store typing environ-

ments, ρ a store and x a variable. Suppose that ρ �Σ Γ, Σ′ = Σ[ρ(x) 7→ Σ(ρ(x))•], Γ′ = Γ[x 7→ Γ(x)•],

bΣ(ρ(x))c = ◦ and NAOO2(ρ,Σ). Then ρ �Σ′ Γ′.

3.3.4 Soundness - Type Safety

Theorem 1 states that the proposed type system satisfies the Type Safety property. This theorem

makes use the various lemmas introduced in the previous sections as well as other less important

properties given in the Appendix. Figure 3.4 illustrates the dependencies between the discussed lemmas

and the main theorem.

Theorem 1 (Soundness - Type Safety). Let g be a function and ∆ a typing context. Let h be a heap, ρ a

store and s a statement. Suppose that g,∆ ` {Γ} s {Γ′}, 〈Σ, h, ρ, s〉 ⇓i 〈Σ′, h′, ρ′〉 and h, ρ � Σ,Γ. Then

h′, ρ′ � Σ′,Γ′.

Proof. The proof follows by induction on the derivation of 〈Σ, h, ρ, s〉 ⇓i 〈Σ′, h′, ρ′〉. Hence, assuming that

g,∆ ` {Γ} s {Γ′} (hyp.1), 〈Σ, h, ρ, s〉 ⇓i 〈Σ′, h′, ρ′〉 (hyp.2) and h, ρ � Σ,Γ (hyp.3).

23

Figure 3.4: Relation between lemmas and theorems for the proof of Type Safety

Base Cases:

[SKIP] Suppose that s = skip (hyp.4). We have that:

• g,∆ ` {Γ} skip {Γ} is applied. (1) - hyp.4

• 〈Σ, h, ρ, skip〉 ⇓i 〈Σ, h, ρ〉 (2) - hyp.4

• Γ′ = Γ (3) - hyp.1 + (1)

• Σ′ = Σ, h′ = h, ρ′ = ρ (4) - hyp.2 + (2)

• h′, ρ′ � Σ′,Γ′ (5) - (3) + (4) + hyp.3

[VAR ASSIGNMENT] Suppose that x := e (hyp.4). We have that:

• Γ`e:τe Closed(τe)
g,∆`{Γ} x:=e {Γ[x 7→τe]} is applied (1) - hyp.4

• Γ ` e : τe (2) - (1)

• 〈Σ, h, ρ, x := e〉 ⇓i 〈Σ, h, ρ[x 7→ JeKρ]〉 (3) - hyp.4

• Γ′ = Γ[x 7→ τe] (4) - hyp.1 + (1)

• Σ′ = Σ, h′ = h, ρ′ = ρ[x 7→ JeKp] (5) - hyp.2 + (3)

• ∀y∈dom(ρ),y 6=x Γ(y) = Γ′(y) e ρ(y) = ρ′(y) (6) - (4) + (5)

• Se y = x então ρ′(x) = JeKρ e ρ′(y) � Γ′(y) (7) - (2) + (4) + (5) + Lemma WTE-Safety

• ∀y∈dom(Γ′) ρ
′(y) �Σ Γ′(y) (8) - (6) + (7)

• h′, ρ′ � Σ′,Γ′ (9) - (5) + (8) + hyp.3

[FIELD LOOKUP] Suppose that x := e.f (hyp.4). We have that:

24

• Γ`e:{fi:τi|ki=1,f :τ}∗ Closed(τ)

g,∆`{Γ}x:=e.f{Γ[x 7→τ]} is applied (1) - hyp.4

• Γ ` e : {fi : τi|ki=1, f : τ}∗ (2) - (1)

• 〈Σ, h, ρ, x := e〉 ⇓i 〈Σ, h, ρ[x 7→ h(JeKρ, JfKρ)]〉 (3) - hyp.4

• Γ′ = Γ[x 7→ τ] (4) - hyp.1 + (1)

• Σ′ = Σ, h′ = h, ρ′ = ρ[x 7→ h(JeKρ, JfKρ)] (5) - hyp.2 + (3)

• ∀y∈dom(ρ),y 6=x Γ(y) = Γ′(y) e ρ(y) = ρ′(y) (6) - (4) + (5)

• Se y = x então ρ′(x) = h(JeKρ, f) e ρ′(y) � Γ′(y) (7) - (2) + (4) + (5) + Lemma WTE-Safety

• ∀y∈dom(Γ′) ρ
′(y) �Σ Γ′(y) (8) - (6) + (7)

• h′, ρ′ � Σ′,Γ′ (9) - (5) + (8) + hyp.3

[FIELD ASSIGNMENT - OPEN] Suppose that s = x.f := e (hyp.4) and bΣ(JxKρ)c = ◦ (hyp.5).

• 〈Σ, h, ρ, x.f := e〉 ⇓i 〈Σ′, h[(l, f) 7→ v], ρ〉 (1) - hyp.2 + hyp.4 + hyp.5

• JxKρ = l (2) - (1)

• JeKρ = v (3) - (1)

• τ = TypeΣ(v) (4) - (1)

• Σ′ = Σ[l 7→ Σ(l)[f 7→ τ]], h′ = h[(l, f) 7→ v], ρ′ = ρ (5) - (1)

• ClosedΣ(v) (6) - (1)

• l �Σ Γ(x) (7) - hyp.3 + (2) + Lemma WTE-Safety

• bΓ(x)c = ◦ (8) - hyp.5 + (7)

We have two cases to consider:

Case (l, f) /∈ dom(h) (hyp.6):

• f /∈ dom(Σ(l)) (9.1.1) - hyp.3 + hyp.6

• f /∈ dom(Γ(x)) (9.1.2) - (9.1.1)

•
Γ`e:τe Γ(x)={fi:τi|ki=1}

◦,∀i∈{1,...,k}f 6=fi
g,∆`{Γ}x.f :=e{Γ[x 7→{fi:τi|ki=1,f :τe}◦]}

is applied. (9.1.3) - (8) + (9.1.2) + hyp.1

• Γ ` e : τe (9.1.4) - (9.1.3)

• Γ(x) = {fi : τi|ki=1}◦ (9.1.5) - (9.1.3)

• Γ′ = Γ[x 7→ {fi : τi|ki=1, f : τe}◦] (9.1.6) - (9.1.3)

• v �Σ τe (9.1.7) - (3) + (9.1.4) + hyp.3 + Lemma WTE-Safety

• τe = τ (9.1.9) - (9.1.7) + (4) + Lemma Satisfaction Uniqueness

• h′ � Σ′ (9.1.10) - (5) + (6) + (9.1.8) + hyp.3 + hyp.5 + NAOO1 + Lemma Heap Update

• Γ′ = Γ[x 7→ Γ(x)[f 7→ τ]] (9.1.11) - (9.1.5) + (9.1.6) + (9.1.9)

• ρ′ �Σ′ Γ′ (9.1.12) - (5) + (6) + (9.1.11) + hyp.3 + hyp.5 + NAOO2 + Lemma Store Update

• h′, ρ′ � Σ′,Γ′ (9.1.13) - (9.1.10) + (9.1.12)

Case (l, f) ∈ dom(h) (hyp.6):

• f ∈ dom(Σ(l)) (9.2.1) - hyp.3 + hyp.6

25

• f ∈ dom(Γ(l)) (9.2.2) - (9.2.1)

•
Γ`e:τe Γ(x)={fi:τi|ki=1}

◦,∃j∈{1,...,k}f=fj

g,∆`{Γ}x.f :=e{Γ[x 7→{fi:τi|ki=1,i 6=j
,f :τe}◦]}

is applied. (9.1.3) - (8) + (9.1.2) + hyp.1

• Γ ` e : τe (9.1.4) - (9.1.3)

• Γ(x) = {fi : τi|ki=1}◦ (9.1.5) - (9.1.3)

• Γ′ = Γ[x 7→ {fi : τi|ki=1,i 6=j , f : τe}◦] (9.1.6) - (9.1.3)

• v �Σ τe (9.1.7) - (3) + (9.1.4) + hyp.3 + Lemma WTE-Safety

• v �Σ τ (9.1.8) - (4)

• τe = τ (9.1.9) - (9.1.7) + (9.1.8) + Lemma Satisfaction Uniqueness

• h′ � Σ′ (9.1.10) - (5) + (6) + (9.1.8) + hyp.3 + hyp.5 + NAOO1 + Lemma Heap Update

• Γ′ = Γ[x 7→ Γ(x)[f 7→ τ]] (9.1.11) - (9.1.5) + (9.1.6) + (9.1.9)

• ρ′ �Σ′ Γ′ (9.1.12) - (5) + (6) + (9.1.11) + hyp.3 + hyp.5 + NAOO2 + Lemma Store Update

• h′, ρ′ � Σ′,Γ′ (9.1.13) - (9.1.10) + (9.1.12)

[FIELD ASSIGNMENT - CLOSE] Suppose that s = x.f := e (hyp.4) and bΣ(JxKρ)c = • (hyp.5). We have that:

• Γ`e:τe Γ(x)={...,f :τf ,...}• τe=τf
g,∆`{Γ}x.f :=e{Γ} is applied (1) - hyp.1 + hyp.4 + hyp.5

• Γ ` e : τe (2) - (1)

• Γ(x) = {..., f : τf , ...}• (3) - (1)

• τe = τf (4) - (1)

• 〈Σ, h, ρ, x.f := e〉 ⇓i 〈Σ, h[(l, f) 7→ v], ρ〉 (5) - hyp.2 + hyp.4 + hyp.5

• JeKρ = v (6) - (5)

• JxKρ = l (7) - (5)

• Σ(l, f) = TypeΣ(v) (8) - (5)

• h(l, f) = vf (9) - (5)

• Γ′ = Γ (10) - (1)

• Σ′ = Σ, h′ = h[(l, f) 7→ v], ρ′ = ρ (11) - (5)

• ρ′ �Σ′ Γ′ (12) - (10) + (11) + hyp.3

We now have two situations to consider to show that ∀l∈dom(Σ)h
′(l) � Σ′(l):

• If l̂ 6= l then h′(l̂) = h(l̂) therefore h′(l̂) � Σ′(l̂) (13.1) - (11)

• If l̂ = l we have that: (13.2)

– ∀g∈dom(h)\f : h′(l̂, g) = h(l̂, g) (13.2.2) - (11)

– ∀g∈dom(h)\f : h′(l̂, g) �Σ′ Σ′(l̂, g) (13.2.3) - (11) + (13.2.2)

– v �Σ τe (13.2.4) - (2) + (6)

– v �Σ′ τe (13.2.5) - (8) + (13.2.4)

– v �Σ′ τf (13.2.6) - (4) + (13.2.5) + (8)

– h′(l̂, f) �Σ′ Σ′(l̂, f) (13.2.7) - (3) + (11) + (13.2.6)

26

– h′(l̂) � Σ′(l̂) (13.2.8) - (13.2.1) + (13.2.3) + (13.2.7)

Therefore:

• h′ � Σ′ (14) - (13.1) + (13.2)

• h′, ρ′ � Σ′,Γ′ (15) - (12) + (14)

[NEW OBJECT] Suppose that s = x := {}(hyp.4). We have that:

• g,∆ ` {Γ}x := {}{Γ[x 7→ {}◦]} is applied. (1) - hyp.1 + hyp.4

• 〈Σ, h, ρ, x := {}〉 ⇓i 〈Σ′, h′, ρ[x 7→ l]〉 (2) - hyp.2 + hyp.4

• l /∈ dom(h) (3) - (2)

• Γ′ = Γ[x 7→ {}◦] (4) - (1)

• Σ′ = Σ[l 7→ {}◦], h′ = h[l 7→ {}], ρ′ = ρ[x 7→ l] (5) - (2)

• h′ � Σ′ (6) - (3) + (4) + (5) + hyp.3 + Lemma Geap New

• ρ′ �Σ′ Γ′ (7) - (3) + (5) + hyp.3 + Lemma Store New

• h′, ρ′ � Σ′,Γ′ (8) - (6) + (7)

[COMMIT] Suppose that s = commit(x)(hyp.4). We have that:

• bΓ(x)c=◦
g,∆`{Γ} commit(x) {Γ[x7→Γ(x)•]} is applied. (1) - hyp.1 + hyp.4

• 〈Σ, h, ρ, commit(x)〉 ⇓i 〈Σ[l 7→ Σ(l)•], h, ρ〉 (2) - hyp.2 + hyp.4

• JxKρ = l (3) - (2)

• bΣ(l)c = ◦ (4) - (2)

• Γ′ = Γ[x 7→ Γ(l)•] (5) - (1)

• Σ′ = Σ[l 7→ Σ(l)•], h′ = h, ρ′ = ρ (6) - (2)

• h′ � Σ′ (7) - (4) + (6) + hyp.3 + Lemma Heap Close

• ρ′ �Σ′ Γ′ (8) - (3) + (4) +(5) + (6) + hyp.3 + Lemma Store Close

• h′, ρ′ � Σ′,Γ′ (9) - (7) + (8)

[FIELD DELETE] Suppose that s = delete(x)(hyp.4). We have that:

•
Γ(x)={fi:τi|ki=1}

◦,∃j∈{1,...,k}f=fj

g,∆`{Γ}delete x.f{Γ[x 7→{fi:τi|ki=1,i 6=j
}◦]} is applied. (1) - hyp.1 + hyp.4

• 〈Σ, h, ρ, delete(x.f)〉 ⇓i 〈Σ\(l, f), h\(l, f), ρ〉 (2) - hyp.2 + hyp.4

• JxKρ = l (3) - (2)

• Γ′ = Γ\(x, f) (4) - (2)

• Σ′ = Σ\(l, f), h′ = h\(l, f), ρ′ = ρ (5) - (1)

• h′ � Σ′ (6) - (4) + hyp.1 + Lemma Heap Delete

• ρ′ �Σ′ Γ′ (7) - (4) hyp.1 + Lemma Store Delete

• h′, ρ′ � Σ′,Γ′

27

Induction cases:

[IF-TRUE] It follows that s = if(e){s1} else {s2} (hyp.4) and JeKρ = true (hyp.5). We have that:

• g,∆`e:bool g,∆`{Γ0}s1{Γ1} g,∆`{Γ0}s2{Γ2}
g,∆`{Γ0}if(e){s1}else{s2}{Γ1uΓ2}

is applied. (1) - hyp.1 + hyp.4

• g,∆ ` {Γ}s1{Γ1} (2) - (1)

• 〈Σ, h, ρ, if(e){s1} else {s2}〉 ⇓i 〈Σ′, h′, ρ′〉 (3) - hyp.2 + hyp.4

• 〈Σ, h, ρ, s1〉 ⇓i 〈Σ′, h′, ρ′〉 (4) - (3) + hyp.5

• h′, ρ′ � Σ′,Γ1 (5) - (2) + (4) + hyp.3 + hyp.ind.

• h′, ρ′ � Σ′,Γ1 u Γ2 (6) - (5) + Lemma Weakening

• Γ′ = Γ1 u Γ2 (7) - (1)

• h′, ρ′ � Σ′,Γ′ (8) - (4) + (6) + (7)

[IF-FALSE] It follows that s = if(e){s1} else {s2} (hyp.4) and JeKρ = false (hyp.5). We have that:

• g,∆`e:bool g,∆`{Γ0}s1{Γ1} g,∆`{Γ0}s2{Γ2}
g,∆`{Γ0}if(e){s1}else{s2}{Γ1uΓ2}

is applied. (1) - hyp.1 + hyp.4

• g,∆ ` {Γ}s1{Γ2} (2) - (1)

• 〈Σ, h, ρ, if(false){s1} else {s2}〉 ⇓i 〈Σ′, h′, ρ′〉 (3) - hyp.2 + hyp.4

• 〈Σ, h, ρ, s2〉 ⇓i 〈Σ′, h′, ρ′〉 (4) - (3) + hyp.5

• h′, ρ′ � Σ′,Γ2 (5) - (2) + (4) + hyp.3 + hyp.ind.

• h′, ρ′ � Σ′,Γ1 u Γ2 (6) - (5) + Lemma weakning

• Γ′ = Γ1 u Γ2 (7) - (1)

• h′, ρ′ � Σ′,Γ′ (8) -(4) + (5) + (7)

[WHILE] Suppose that s = while(e){s} (hyp.4). We have that:

• g,∆`e:bool g,∆`{Γ}s{Γ}
g,∆`{Γ}while(e){s}{Γ} is applied. (1) - hyp.1 + hyp.4

• g,∆ ` {Γ}s{Γ} (2) - (1)

• g,∆ ` e : bool (3) - (1)

• By derivation, g,∆ ` {Γ} if(e){s;while(e){s}} else {skip} {Γ} (4) - (2) + (3) + hyp.1

g,∆ ` e : bool

g,∆ ` {Γ} s {Γ} g,∆ ` {Γ} while(e){s} {Γ}

g,∆ ` {Γ} s;while(s){s} {Γ} g,∆ ` {Γ} skip {Γ}

g,∆ ` {Γ} if(e){s;while(e){s}} else {skip} {Γ}

• 〈Σ, h, ρ,while(e){s}〉 ⇓i 〈Σ′, h′, ρ′〉 (5) - hyp.2 + hyp.4

• 〈Σ, h, ρ, if(e){s;while(e){s}} else {skip}〉 ⇓i 〈Σ′, h′, ρ′〉 (6) - (5)

• h′, ρ′ � Σ′,Γ (7) - (4) + (6) + hyp.3 + hyp.ind.

• Γ′ = Γ (8) - (1)

• h′, ρ′ � Σ′,Γ′ (9) - (7) + (8)

[SEQUENCING] Suppose that s = s1; s2 (hyp.4). We have that:

28

• g,∆`{Γ}s1{Γ1} g,∆`{Γ1}s2{Γ2}
g,∆`{Γ}s1;s2{Γ2}

is applied. (1) - hyp.1 + hyp.4

• g,∆ ` {Γ}s1{Γ1} (2) - (1)

• g,∆ ` {Γ1}s2{Γ2} (3) - (1)

• 〈Σ, h, ρ, s1; s2〉 ⇓i 〈Σ′, h′, ρ′〉 (4) - hyp.2 + hyp.4

• 〈Σ, h, ρ, s1〉 ⇓i 〈Σ1, h1, ρ1〉 (5) - (4)

• 〈Σ1, h1, ρ1, s2〉 ⇓i 〈Σ2, h2, ρ2〉 (6) - (4)

• h1, ρ1 � Σ1,Γ1 (7) - (2) + (4) + hyp.3 + hyp.ind.

• h2, ρ2 � Σ2,Γ2 (8) - (3) + (6) + (7) + hyp.ind.

• Γ′ = Γ2 (9) - (1)

• Σ′ = Σ2, h
′ = h2, ρ

′ = ρ2 (10) - (4)

• h′, ρ′ � Σ′,Γ′ (11) - (8) + (9) + (10)

Therefore h′, ρ′ � Σ′,Γ′

3.4 Soundness - Fault Avoidance

In this section, we extend our operational semantics to take into account erroneous executions and

prove the standard fault avoidance property of sound type systems: well-typed programs cannot go

wrong. To this end, we extend the operational semantics defined in Section 3.2 with explicit error deriva-

tions, writing: 〈Σ, h, ρ, s〉 ⇓i E to mean that evaluation of the statement s in the heap h, store ρ, and heap

typing environment Σ leads to an execution error. One can leverage these error derivations to formally

define fault avoidance. Essentially, if a statement s is typable with respect to a given function g, typing

context ∆ and store typing environments Γ and Γ′, i.e. g,∆ ` {Γ} s {Γ′}, and if one executes s in a state

(h, ρ) such that h, ρ � Σ,Γ, for a given heap typing environment Σ, then the execution of s will not result

in a runtime error; put formally:

(g,∆ ` {Γ} s {Γ′} ∧ h, ρ � Σ,Γ) ⇒ 〈Σ, h, ρ, s〉 6⇓i E (3.2)

3.4.1 Error Executions

Figure 3.5 extends the operational semantics given in Section 3.2 with a set of explicit error deriva-

tions. These derivations model the runtime errors that can occur during the execution of an ECMA-SL

statement. We consider the following five types of runtime errors: (1) branching on a value that is not of

boolean type; (2) creating a second reference to an open object, thereby violating the NAOO invariant;

(3) updating a field of a closed object to a value of a different type; (4) adding a new field to a closed

object; and (5) deleting a field from a closed object. Below, we explain some of the rules; the others

are analogous.

29

OPEN RHS - ASSIGNMENT
v = JeKρ ¬ClosedΣ(v)

〈Σ, h, ρ, x := e〉 ⇓i E

OPEN RHS - LOOKUP
JeKρ = l h(l, f) = v ¬ClosedΣ(v)

〈Σ, h, ρ, x := e.f〉 ⇓i E

OPEN RHS - FIELD ASSIGNMENT
JeKρ = v JxKρ = l ¬ClosedΣ(v)

〈Σ, h, ρ, x.f := e〉 ⇓i E

CLOSED OBJECT - ILLEGAL UPDATE
JeKρ = v JxKρ = l Σ(l) = {fi : τi|ni=1, f : τ}• TypeΣ(v) 6= τ

〈Σ, h, ρ, x.f := e〉 ⇓i E

CLOSED OBJECT - ILLEGAL NEW FIELD
JxKρ = l Σ(l) = {fi : τi|ni=1}• ∀i fi 6= f

〈Σ, h, ρ, x.f := e〉 ⇓i E

CLOSED OBJECT - ILLEGAL DELETION
JxKρ = l bSigma(l)c = •
〈Σ, h, ρ, delete(x.f)〉 ⇓i E

IF - ILLEGAL GUARD
JeKρ = v TypeΣ(v) 6= bool

〈Σ, h, ρ, if(e){s1} else {s2}〉 ⇓i E

IF-TRUE - ERROR
JeKρ = true 〈Σ, h, ρ, s1〉 ⇓i E
〈Σ, h, ρ, if(e){s1} else {s2}〉 ⇓i E

IF-FALSE - ERROR
JeKρ = false 〈Σ, h, ρ, s2〉 ⇓i E
〈Σ, h, ρ, if(e){s1} else {s2}〉 ⇓i E

WHILE - ILLEGAL GUARD
JeKρ = v TypeΣ(v) 6= bool

〈Σ, h, ρ,while(e){s}〉 ⇓i E

WHILE - ERROR
〈Σ, h, ρ, if(e){s;while(e){s}} else {skip}〉 ⇓i E

〈Σ, h, ρ,while(e){s}〉 ⇓i E

SEQUENCING - ERROR 1
〈Σ, h, ρ, s1〉 ⇓i E
〈Σ, h, ρ, s1; s2〉 ⇓i E

SEQUENCING - ERROR 2
〈Σ, h, ρ, s1〉 ⇓i 〈Σ1, h1, ρ1〉 〈Σ, h, ρ, s2〉 ⇓i E

〈Σ1, h1, ρ1, s1; s2〉 ⇓i E

Figure 3.5: Big-Step semantics for statements - erroneous executions: 〈Σ, h, ρ, s〉 ⇓i E

[OPEN RHS - ASSIGNMENT] This rule is applied when an open object is assigned to a variable. The

rule simply evaluates the expression e obtaining the value v which is open thus leading to an erroneous

execution.

[OPEN RHS - LOOKUP] This rule is applied when an open field of an object is assigned to a variable. The

rule first evaluates the expression e obtaining the value l. Then, it obtains the value v associated with

the field f in the object pointed to by l which is open thus leading to an erroneous execution.

[OPEN RHS - FIELD ASSIGNMENT] This rule is applied when assigning an open value to an object’s field.

The rule first evaluates the expression e obtaining the value v, and the location l of the program variable

x. Then, as v is open it leads to an erroneous execution.

[CLOSED OBJECT - ILLEGAL UPDATE] This rule is applied when assigning a value to a field of a closed

object, whose type differs from that of the given value. The rule first evaluates the expression e obtaining

the value v, and the variable x obtaining the location l. Then, the rule checks the type τ associated with

the field f of l, which is different from the type of v, thus leading to an erroneous execution.

[CLOSED OBJECT - ILLEGAL NEW FIELD] This rule is applied when assigning a value to a non-existing

30

field of a closed object. The rule first evaluates the variable x obtaining the location l. Then, as the field

f is not present in l it leads to an erroneous execution.

[CLOSED OBJECT - ILLEGAL DELETION] This rule is applied when deleting the field of a closed object.

The rule first evaluates the variable x obtaining the location l. Then as l points to a closed object the

rule leads to an erroneous execution.

[IF - ILLEGAL GUARD] This rule is applied when evaluating an if statement whose condition does not

evaluate to a boolean. The rule simply evaluates the expression e obtaining the value v which is not a

boolean, thus leading to an erroneous execution.

[IF-TRUE - ERROR] This rule is applied when evaluating an if statement whose condition evaluates

to true and then branch leads to a erroneous execution. The rule simply evaluates the expression e

obtaining the value true, and since the then branch leads to a erroneous execution so does this rule.

[IF-FALSE - ERROR] This rule is applied when evaluating an if statement whose condition evaluates

to false and else branch leads to a erroneous execution. The rule simply evaluates the expression e

obtaining the value false, and since the then branch leads to a erroneous execution so does this rule.

[WHILE - ILLEGAL GUARD] This rule is applied when evaluating a while statement whose condition does

not evaluate to a boolean. The rule simply evaluates the expression e obtaining the value v which is not

a boolean, thus leading to an erroneous execution.

[WHILE - ERROR] This rule is applied when evaluating a while statement and its resolving leads to

an erroneous execution. Since the resolving statement leads to an erroneous execution so does this

statement.

[SEQUENCING - ERROR 1] This rule is applied when evaluating a sequencing statement and its first step

evaluates to a wrong execution. Since this step leads to an erroneous execution so does this statement.

[SEQUENCING - ERROR 2] This rule is applied when evaluating a sequencing statement and its second

step evaluates to an erroneous execution. The rule first verifies that the first step of the sequential

statement is correctly evaluated and, since the second step evaluates to an erroneous execution so

does this statement.

3.4.2 Soundness - Fault Avoidance

Theorem 2 states that the proposed type system satisfies the Fault Avoidance property.

Theorem 2 (Soundness - Fault Avoidance). Let g be a function and ∆ a Typing Context. Let h be a

heap, ρ a store and s a statement. Suppose that g,∆ ` {Γ} s {Γ′} and h, ρ � Σ,Γ then it is not the case

that 〈Σ, h, ρ, s〉 ⇓i E.

Proof. Assuming that g,∆ ` {Γ} s {Γ′} (hyp.1) and h, ρ � Σ,Γ (hyp.2). Suppose also by contradiction

that 〈Σ, h, ρ, s〉 6⇓i E (hyp.3).

Below, we present some of the cases; the others are analogous.

[VAR ASSIGNMENT] Suppose that s = x := e (hyp.4). We have that:

31

• Γ`e:τe Closed(τe)
g,∆`{Γ} x:=e {Γ[x 7→τe]} is applied (1) - hyp.1 + hyp.4

• Γ ` e : τe (2) - (1)

• Closed(τe) (3) - (1)

• ∃v : JeKρ = v (4) - hyp.3 + hyp.4

• ¬ClosedΣ(v) (5) - hyp.3 + hyp.4

• v �Σ τe (6) - (2) + (4) + hyp.2 + Lemma WTE-Safety

• ClosedΣ(v) (7) - (3) + (6) + Lemma Closed Values

• Contradiction (8) - (5) + (7)

[FIELD ASSIGNMENT - OPEN] Suppose that s = x.f := e (hyp.4) and bΣ(JxKρ)c = ◦ (hyp.5). We have that:

•
Γ`e:τe Γ(x)={fi:τi|ki=1}

◦,∀i∈{1,...,k}f 6=fi Closed(τe)

g,∆`{Γ}x.f :=e{Γ[x 7→{fi:τi|ki=1,f :τe}◦]}
or

Γ`e:τe Γ(x)={fi:τi|ki=1}
◦,∃j∈{1,...,k}f=fj Closed(τe)

g,∆`{Γ}x.f :=e{Γ[x 7→{fi:τi|ki=1,i 6=j
,f :τe}◦]}

is applied. (1) - hyp.1 + hyp.4 + hyp.5

• Γ ` e : τe (2) - (1)

• Closed(τe) (3) - (1)

• ∃v : JeKρ = v (4) - hyp.1 + hyp.2

• ¬ClosedΣ(v) (5) - (4) + hyp.3 + hyp.4

• v �Σ τe (6) - (2) + (4) + hyp.2 + Lemma WTE-Safety

• ClosedΣ(v) (7) - (3) + (6) + Lemma Closed Values

• Contradiction (8) - (5) + (7)

[FIELD ASSIGNMENT - CLOSE] Suppose that s = x.f := e (hyp.4) and bΣ(JxKρ)c = • (hyp.5). We have that:

• Γ`e:τe Γ(x)={...,f :τf ,...}• τe=τf
g,∆`{Γ}x.f :=e{Γ} is applied (1) - hyp.1 + hyp.4 + hyp.5

• Γ ` e : τe (2) - (1)

• τe = τf (3) - (1)

• ∃v : JeKρ = v (4) - hyp.3 + hyp.4

• Σ(JxKρ, f) 6= Σ(v) = Σ(JeKρ) (5) - (4) + hyp.3 + hyp.4

• v �Σ τe (6) - (2) + (4) + hyp.2 + Lemma WTE-Safety

• τf = Γ(x, f) = Σ(JxKρ, f) (7) - (1) + hyp.2 + hyp.4

• Σ(JeKρ) = Σ(v) = τe (8) - (5) + (6) + hyp.2

• τe = τf (9) - (5) + (7) + (8)

• Contradiction (10) - (3) + (9)

[SEQUENCING] Suppose that s = s1; s2 (hyp.4). We have that:

• g,∆`{Γ}s1{Γ1} g,∆`{Γ1}s2{Γ2}
g,∆`{Γ}s1;s2{Γ2}

is applied. (1) - hyp.1 + hyp.4

• g,∆ ` {Γ} s1 {Γ1} (2) - (1)

• g,∆ ` {Γ1} s2 {Γ2} (3) - (1)

Since 〈Σ, h, ρ, s〉⇓iE (hyp.3), we have two cases to consider:

Case 〈Σ, h, ρ, s1〉 ⇓i E (hyp.4)

32

– We do not have 〈Σ, h, ρ, s1〉 ⇓i E (4.1.1) - (2) + hyp.2 + hyp.ind.

– Contradiction (4.1.2) - (4.1.1) + hyp.4

Case 〈Σ, h, ρ, s2〉 ⇓i E (hyp.4) and 〈Σ, h, ρ, s1〉 ⇓i 〈Σ1, h1, ρ1〉 (hyp.5)

– Σ1,Γ1 � h1, ρ1 (4.2.1) - (2) + hyp.2 + hyp.5 + soundness

– We do not have 〈Σ1, h1, ρ, s2〉 ⇓i E (4.2.2) - (2) + (4.2.1) + hyp.ind.

– Contradiction (4.2.3) - (4.2.2) + hyp.4

3.5 Function and Return

In this section, we extend the operational semantics introduced in Section 3.2 with support for func-

tion calls and return statements. To this end, we have to change the format of the semantic judgment so

that it additionally produces an outcome, which captures the flow of execution. Modified semantic judge-

ments have the form: 〈Σ, h, ρ, s〉 ⇓i 〈Σ′, h′, ρ′, o〉 signifying that the evaluation of the statement s in the

heap h, store ρ, and heap typing environment Σ results in the heap h′, store ρ′, heap typing environment

Σ′, and outcome o. Outcomes are given by the following grammar:

o ::= Cont | Err | Ret(v) (3.3)

We consider three types of outcomes: (1) the continuation outcome Cont, signifying that the execution

may proceed with the next statement; (2) the error outcome Err, signifying that the execution generated

an error and must therefore be terminated; and (3) the return outcome Ret(v), signifying that the code

of the function that is currently executing returned the value v.

Figure 3.6 gives a selection of the extended semantic rules. In particular, it includes the rules that

handle function calls, the return statement, and sequencing, as well as a few other rules for illustrative

purposes. Note that the rules introduced in Figures 3.3 and 3.5 can be straightforwardly adapted to this

setting. Non-error derivations are simply extended with the continuation outcome Cont. For instance,

the Skip rule becomes: 〈Σ, h, ρ, skip〉 ⇓i 〈Σ, h, ρ, Cont〉. Error derivations are even simpler: instead of

generating the special symbol E, they are modified to generate the error outcome Err. For instance, the

rule open rhs - assignment becomes:

v = JeKρ ¬ClosedΣ(v)

〈Σ, h, ρ, x := e〉 ⇓i 〈Σ, h, ρ, Err〉

In the following, we explain the rules given in Figure 3.6:

[FIELD DELETE] This rule is applied when deleting a field from an object. The rule first evaluates the

variable x to the location l whose field f is to be deleted and checks that it points to an open object.

Afterwards, it removes the pair consisting of the location and field, (l, f) from both the domain of the heap

33

FIELD DELETE
JxKρ = l bΣ(l)c = ◦

〈Σ, h, ρ, delete(x.f)〉 ⇓i 〈Σ\(l, f), h\(l, f), ρ, Cont〉

OPEN RHS - ASSIGNMENT
v = JeKρ ¬ClosedΣ(v)

〈Σ, h, ρ, x := e〉 ⇓i 〈Σ, h, ρ, Err〉

SEQUENCING-1
〈Σ, h, ρ, s1〉 ⇓i 〈Σ1, h1, ρ1, Err〉
〈Σ, h, ρ, s1; s2〉 ⇓i 〈Σ2, h2, ρ2, Err〉

SEQUENCING-2
〈Σ, h, ρ, s1〉 ⇓i 〈Σ1, h1, ρ1, Ret(v)〉
〈Σ, h, ρ, s1; s2〉 ⇓i 〈Σ2, h2, ρ2, Ret(v)〉

SEQUENCING-3
〈Σ, h, ρ, s1〉 ⇓i 〈Σ1, h1, ρ1, Cont〉 〈Σ1, h1, ρ1, s2〉 ⇓i 〈Σ2, h2, ρ2, o〉

〈Σ, h, ρ, s1; s2〉 ⇓i 〈Σ2, h2, ρ2, o〉

RETURN
JeKρ = v

〈Σ, h, ρ, return(e)〉 ⇓i 〈Σ, h, ρ,Ret(v)〉

OPEN FUNCTION CALL
JeiKρ = vi|ni=1 ∃j∈{1,...,n} : ¬ClosedΣ(vj)

〈Σ, h, ρ, x := f(e1, ..., en)〉 ⇓i 〈Σ, h, ρ, Err〉

FUNCTION CALL
JeiKρ = vi|ni=1 body(f) = s params(f) = xi|ni=1

〈Σ, h, [xi 7→ vi|ni=1], s〉 ⇓i 〈Σ′, h′, ρ′, Ret(v)〉 ClosedΣ(vi)
n
i=1

〈Σ, h, ρ, x := f(e1, ..., en)〉 ⇓i 〈Σ′, h′, ρ[x 7→ v], Cont〉

Figure 3.6: Big-Step semantics for statements - function call: 〈Σ, h, ρ, s〉 ⇓i 〈Σ′, h′, ρ′, o〉

and of the heap typing environment and continues with the computation normally, which we represent

using the continuation outcome Cont.

[OPEN RHS - ASSIGNMENT] This rule is applied when the location of an open object is assigned to a

variable. The rule evaluates the expression being assigned and checks that its value is open. Then, it

generates an error using the error outcome Err.

[SEQUENCING-1] This rule is applied when the first step of sequential statement evaluates to an error.

The rule only checks if the first step of the sequential statement leads to an error and immediately

outputs the error (without executing the second statement).

[SEQUENCING-2] This rule is applied when the first step of sequential statement evaluates to a return.

The rule only checks if the first step of the sequential statement leads to a return and immediately

outputs the same return outcome (without executing the second statement).

[SEQUENCING-3] This rule is applied when the first step of the sequential statement evaluates to a con-

tinuation outcome, in which case the second statement must also be evaluated. The rule first evaluates

the first element of the sequence, checking that its evaluation results in a continuation outcome. Then,

the rule evaluates the second statement on the heap typing environment, heap, and store obtained from

the evaluation of the first statement.

[RETURN] This rule is applied when evaluating a return statement. The rule simply evaluates the ex-

pression being returned, obtaining a value v and then generates the return outcome parameterized with

v, Ret(v).

[OPEN FUNCTION CALL] This rule is applied when a function is called with an open argument. Calling a

34

function with an open argument necessarily creates a second reference pointing to it (that being the for-

mal parameter of the function to be called). Hence, calling a function with one or various open arguments

violates the NAOO invariant. For this reason, such calls immediately generate an error outcome.

[FUNCTION CALL] This rule is applied when a function is called with closed arguments. The rule starts

by evaluating the supplied arguments, obtaining a list of closed values vi|ni=1. Then, the rule obtains

the list of formal parameters of the function to be executed xi|ni=1 and the statement s corresponding to

the body of the function, and creates a new store mapping the formal parameters of the function to the

supplied arguments, [xi 7→ vi|ni=1]. Next, the rule executes the body of the function in the newly created

store together with the original heap and heap typing environment, obtaining a final heap, heap typing

environment, and returned value v. Finally, the returned value v is assigned to the program variable x.

Soundness of the Complete Type System We now prove that our full type system satisfies the Type

Safety and Fault Avoidance properties with respect to the extended operational semantics.

Theorem 3 (Soundness - Type Safety). Let g be a function and ∆ a typing context. Let h be a heap, ρ

a store and s a statement. Suppose that g,∆ ` {Γ} s {Γ′}, 〈Σ, h, ρ, s〉 ⇓i 〈Σ′, h′, ρ′, o〉, h, ρ � Σ,Γ and

∆ ` p. Then h′, ρ′ � Σ′,Γ′ and o �Σ′ ∆r(g) .

Proof. The proof follows by induction on the derivation of 〈Σ, h, ρ, s〉 ⇓i 〈Σ′, h′, ρ′, o〉. Hence, assuming

that g,∆ ` {Γ} s {Γ′} (hyp.1), 〈Σ, h, ρ, s〉 ⇓i 〈Σ′, h′, ρ′, o〉 (hyp.2) and h, ρ � Σ,Γ (hyp.3), we have the

following base cases:

[RETURN] Suppose that s = return(e)(hyp.4). We have that:

• ∆(g)=(τ ′1,...,τ
′
n)→τe Γ`e:τe

g,∆`{Γ}return e{Γ} is applied. (1) - hyp.1 + hyp.4

• 〈Σ, h, ρ, return(e)〉 ⇓i 〈Σ, h, ρ,Ret(v)〉 (2) - hyp.2 + hyp.4

• Γ′ = Γ (3) - (1)

• Σ′ = Σ, h′ = h, ρ′ = ρ (4) - (2)

• h′, ρ′ � Σ′,Γ′ (5) - (3) + (4)

• ∆r(g) = τe (6) - (1)

• Γ ` e : τe (7) - (1)

• JeKρ = v (8) - (2)

• v �Σ′ τe (9) - (7) + (8) + hyp.2 + Lemma WTE-Safety

• v �Σ′ ∆r(g) (10) - (6)

[FUNCTION CALL] Suppose that s = x := f(e1, ..., en) (hyp.4). We have that:

• Γ`ei:τi|ni=1 ∆(f)=(τ1,...,τn)→τ Closed(τi)|ni=1
g,∆`{Γ}x:=f(ei|ni=1){Γ[x7→τ]} is applied. (1) - hyp.1 + hyp.4

• 〈Σ, h, ρ, x := f(e1, ..., en)〉 ⇓i 〈Σ′′, h′′, ρ[x 7→ v], Cont〉 (2) - hyp.2 + hyp.4

• JeiKρ = vi|ni=1 (3) - (2)

• body(f) = s (4) - (2)

35

• params(f) = xi|ni=1 (5) - (2)

• 〈Σ, h, [xi 7→ vi|ni=1], s〉 ⇓i 〈Σ′, h′, ρ′, Ret(v)〉 (6) - (2)

• ClosedΣ(vi)
n
i=1 (7) - (2)

• Γ′ = Γ[x 7→ τ] (8) - (1)

• Σ′ = Σ′′, h′ = h′′, ρ′ = ρ[x 7→ v] (9) - (2)

• h′, ρ′ � Σ′,Γ′ (10) - hyp.3 + hyp.ind

The remaining cases are analogous to the ones presented in Subsection 3.3.4.

Theorem 4 (Soundness - Fault Avoidance). Let g be a function and ∆ a Typing Context. Let h be a

heap, ρ a store and s a statement. Suppose that g,∆ ` {Γ} s {Γ′} and h, ρ � Σ,Γ then it is not the case

that 〈Σ, h, ρ, s〉 ⇓i 〈Σ′, h′, ρ′, Err〉.

Proof. Assuming that g,∆ ` {Γ} s {Γ′} (hyp.1) and h, ρ � Σ,Γ (hyp.2). Suppose also by contradiction

that 〈Σ, h, ρ, s〉 ⇓i 〈Σ′, h′, ρ′, Err〉 (hyp.3).

[UNCLOSED FUNCTION ARGUMENT] Suppose that s = x := f(e1, ..., en) (hyp.4). We have that:

• Γ`ei:τi|ni=1 ∆(f)=(τ1,...,τn)→τ Closed(τi)|ni=1
g,∆`{Γ}x:=f(ei|ni=1){Γ[x7→τ]} is applied. (1) - hyp.1 + hyp.4

• Γ ` ei : τi|ni=1 (2) - (1)

• Closed(τi)|ni=1 (3) - (1)

• ∃vi : JeiKρ = vi (4) - hyp.1 + hyp.2

• ∃vj¬ClosedΣ(vj) (5) - (4) + hyp.3 + hyp.4

• vj �Σ τj (6) - (2) + (4) + hyp.2 + Lemma WTE-Safety

• ClosedΣ(vj) (7) - (3) + (6) + Lemma closed values

• Contradiction (8) - (5) + (7)

36

Chapter 4

Small-Step Soundness

In this chapter we prove the soundness of our type system with respect to a small-step semantics

of ECMA-SL. In Section 4.1, we introduce our small-step semantics for ECMA-SL. Afterwards, in Sec-

tions 4.2 and 4.3 we prove preservation and progress by resorting to the lemmas introduced in these

sections and in the previous chapter.

In order to simplify the exposition, as in the previous chapter, the semantics of ECMA-SL that we

first present does not model function calls. Thus, in Section 3.5 we extend the semantics to cater for

this aspect.

4.1 Small-Step Semantics

In this section we define a small-step semantics for ECMA-SL statements, ignoring for now function

calls. Once again, we rely on the semantics for expressions presented in Figure 3.2, using the notation

JeKρ = v to mean that the evaluation of the expression e in the store ρ results in the value v.

The small-step semantics judgements for statements are of the form 〈Σ, h, ρ, s〉 →i 〈Σ′, h′, ρ′, s′〉,

meaning that the evaluation of the statement s in the heap h and store ρ leads to a statement s′ in the

heap h′ and store ρ′. Similarly to our big-step semantics, and in order to reason about the types of the

objects in the heap, we have to instrument the semantics to keep track of the types of the objects created

at runtime. To this end, the semantic judgement for statements additionally include the initial and final

heap typing environments, respectively Σ and Σ′.

Our small-step semantics is equivalent to the big-step semantics provided in the previous chapter.

Put formally, for every heap typing environments Σ and Σ′, heaps h and h′, stores ρ and ρ′, and statement

s, it holds that:

〈Σ, h, ρ, s〉 ⇓i 〈Σ′, h′, ρ′〉 ⇐⇒ 〈Σ, h, ρ, s〉 →∗i 〈Σ′, h′, ρ′, skip〉 (4.1)

where: we use→∗i to denote the reflexive-transitive closure of→i. From the equivalence result, it follows

that the small-step semantics also enforces the no aliasing for open objects (NAOO) invariant. Hence,

we do not present a formal proof of this fact as it would be essentially a replay of the proof provided in

Subsection 3.3.1.

37

SEQUENCING SKIP

〈Σ, h, ρ, skip; s〉 →i 〈Σ, h, ρ, s〉

ASSIGNMENT
v = JeKρ ClosedΣ(v)

〈Σ, h, ρ, x := e〉 →i 〈Σ, h, ρ[x 7→ v], skip〉

ASSIGNMENT FROM FIELD
JeKρ = l h(l, f) = v ClosedΣ(v)

〈Σ, h, ρ, x := e.f〉 →i 〈Σ, h, ρ[x 7→ v], skip〉

NEW OBJECT
l /∈ dom(h) Σ′ = Σ[l 7→ {}◦] h′ = h[l 7→ {}]
〈Σ, h, ρ, x := {}〉 →i 〈Σ′, h′, ρ[x 7→ l], skip〉

FIELD ASSIGNMENT OPEN
JeKρ = v JxKρ = l τ = TypeΣ(v) bΣ(l)c = ◦ Σ′ = Σ[l 7→ Σ(l)[f 7→ τ]] ClosedΣ(v)

〈Σ, h, ρ, x.f := e〉 →i 〈Σ′, h[(l, f) 7→ v], ρ, skip〉

FIELD ASSIGNMENT CLOSE
JeKρ = v JxKρ = l Σ(l, f) = TypeΣ(v) bΣ(l)c = • (l, f) ∈ dom(h) ClosedΣ(v)

〈Σ, h, ρ, x.f := e〉 →i 〈Σ, h[(l, f) 7→ v], ρ, skip〉

FIELD DELETE
JxKρ = l bΣ(l)c = ◦

〈Σ, h, ρ, delete(x.f)〉 →i 〈Σ\(l, f), h\(l, f), ρ, skip〉

COMMIT
JxKρ = l bΣ(l)c = ◦

〈Σ, h, ρ, commit(x)〉 →i 〈Σ[l 7→ Σ(l)•], h, ρ, skip〉

IF-TRUE
JeKρ = true

〈Σ, h, ρ, if(e){s1} else {s2}〉 →i 〈Σ, h, ρ, s1〉

IF-FALSE
JeKρ = false

〈Σ, h, ρ, if(e){s1} else {s2}〉 →i 〈Σ, h, ρ, s2〉

WHILE

〈Σ, h, ρ,while(e){s}〉 →i 〈Σ, h, ρ, if(e){s;while(e){s}} else {skip}〉

SEQUENCING COMPOSITION
〈Σ, h, ρ, s1〉 →i 〈Σ2, h2, ρ2, s

′
1〉

〈Σ, h, ρ, s1; s2〉 →i 〈Σ2, h2, ρ2, s
′
1; s2〉

Figure 4.1: Small-Step semantics for statements: 〈Σ, h, ρ, s〉 →i 〈Σ′, h′, ρ′, s′〉

The semantic rules are given in Figure 4.1 and explained below. Unsurprisingly, the small-step rules

are analogous to the big-step rules given in the previous chapter. In fact, the set of rules that lead to a

skip statement almost exactly coincide with the corresponding big-step rules. The major differences ap-

pear in the rules associated with compound statements: if, while, and sequence. For these statements,

the corresponding small-step rules perform a single computation step, generating the statement to be

executed next, while the big-step rules capture their complete evaluation.

[SEQUENCING SKIP] This rule is applied when there is a sequence statement which has as first element

a skipstatement. The rule simply proceeds to the second statement of the sequencing.

[VAR ASSIGNMENT] This rule is used when a closed value is being assigned to a program variable. The

rule first evaluates the expression e obtaining the value v, which is then assigned to the variable x in the

store ρ. The rule proceeds to a skip statement.

[FIELD LOOKUP] This rule is applied when assigning a closed value from an object field to a program

variable. The rule first evaluates the expression e obtaining the object location l. Then, it obtains the

value v associated with the field f in the object pointed to by l and updates the value of the variable x to

v in the store ρ. The rule proceeds to a skip statement.

[NEW OBJECT] This rule is applied when assigning a new object to a variable x. The rule finds a

38

location l which is not in the domain of the heap and adds such location to both heap and heap typing

environment, mapping it to an empty object and to an empty open object type, respectively. The rule

also maps x to l in the store and proceeds to a skip statement.

[FIELD ASSIGNMENT - OPEN] This rule is applied when assigning a closed value to a field of an open

object. The rule first evaluates the expression e obtaining the value v, and the location l of the pro-

gram variable x. Then, it updates the field f being modified and its type in the heap and heap typing

environment, respectively. The rule proceeds to a skip statement.

[FIELD ASSIGNMENT - CLOSE]This rule is applied when assigning a closed value to a field of a close

object. The rule first evaluates the expression e obtaining the value v, and the location l of the program

variable x. Then, it verifies if the already existing field f of l has the same type as v and, if so, it updates

the value of the field f to v in the heap h. The rule proceeds to a skip statement.

[FIELD DELETE] This rule is applied when deleting a field from an open object. The rule first obtains the

location l of the program variable x. Then it removes the pair (l, f) from the domain of both heap and

heap typing environment. The rule proceeds to a skip statement.

[COMMIT] This rule is applied when closing an open object. The rule first obtains the location l of the

program variable x. Afterwards it updates the type associated with the location l to a closed type in the

store typing environment Σ. The rule proceeds to a skip statement.

[IF-TRUE] This rule is applied when evaluating an if statement and its associated boolean expression

evaluates to true. The rule proceeds to the then branch statement.

[IF-FALSE] This rule is applied when evaluating an if statement and its associated boolean expression

evaluates to false. The rule proceeds to the then branch statement.

[WHILE] This rule is applied when evaluating a while statement. The rule proceeds to the conditional

statement with the same boolean expression as the while, as then branch statement the body of the

while, and as else branch statement skip.

[SEQUENCING COMPOSITION] This rule is used to evaluate a sequence of two statements s1; s2. The

rule delegates its job to a support transition which goes from the statements s1 to s′1. The main rule then

proceeds with the resulting heap typing environment Σ2, heap h2, store ρ2 and statement s′1; s2.

4.2 Soundness - Preservation

In this section we prove that the proposed type system satisfies the preservation property with re-

spect to the small-step operational semantics defined in Section 4.1. Essentially, preservation states

that the small-step operational semantics preserves satisfiability, meaning that if one starts executing a

statement in a state that satisfies a given heap and typing environment, all the intermediate states will

satisfy their corresponding heaps and typing environment. Hence, if a statement s is typable with respect

to a given function g, typing context ∆ and store typing environments Γ and Γf , i.e. g,∆ ` {Γ} s {Γf},

and if one performs one execution step of s in a state (h, ρ) such that h, ρ � Σ,Γ, for a given heap

39

typing environment Σ, obtaining the statement to be executed next, s′, the state (h′, ρ′), and the heap

typing environment Σ′. Then, there exists a variable typing environment Γ′, such that h′, ρ′ � Σ′,Γ′ and

g,∆ ` {Γ′} s′ {Γf}. Put formally:

g,∆ ` {Γ} s {Γf} ∧ h, ρ � Σ,Γ ∧ 〈Σ, h, ρ, s〉 →i 〈Σ′, h′, ρ′, s′〉

=⇒ (4.2)

∃Γ′ : h′, ρ′ � Σ′,Γ′ ∧ g,∆ ` {Γ′} s′ {Γf}

Below, we introduce Theorem 5 stating that the proposed type system satisfies the Preservation

property. Similarly to the type safety theorem, the preservation theorem uses the lemmas introduced in

Section 3.3.

Theorem 5 (Preservation). Let g be a function and ∆ a Typing Context. Let Σ and Σ′ heap typing

environments, Γ, Γ′ and Γf store typing environments, h and h′ heaps, ρ and ρ′ stores and s and

s′ statements. Suppose that g,∆ ` {Γ} s {Γf}, 〈Σ, h, ρ, s〉 →i 〈Σ′, h′, ρ′, s′〉 and h, ρ � Σ,Γ. Then

∃Γ′ : h′, ρ′ � Σ′,Γ′ ∧ g,∆ ` {Γ′} s′ {Γf}

Proof. The proof follows by induction on the derivation of 〈Σ, h, ρ, s〉 →i 〈Σ′, h′, ρ′, s′〉. Hence, assuming

that g,∆ ` {Γ} s {Γf} (hyp.1), 〈Σ, h, ρ, s〉 →i 〈Σ′, h′, ρ′, s′〉 (hyp.2) and h, ρ � Σ,Γ (hyp.3), we have the

following base cases:

[ASSIGNMENT] Suppose that s = x := e(hyp.4). We have that:

• Γ`e:τe Closed(τe)
g,∆`{Γ} x:=e {Γ[x 7→τe]} is applied (1) - hyp.1 + hyp.4

• Σ′ = Σ, h′ = h, ρ′ = ρ[x 7→ JeKρ], s′ = skip (2) - hyp.2 + hyp.4

• Γ ` e : τe (3) - (1)

• JeKρ �Σ τe (4) - (2) + (3) + hyp.3 + Lemma WTE-Safety

• Γf = Γ[x 7→ τe] (5) - (1)

• Taking Γ′ = Γf = Γ[x 7→ τe] (6) - (4)

• h′ � Σ′ (7) - (2) + hyp.3

• ∀y∈dom(ρ),y 6=x Γ(y) = Γ′(y) e ρ(y) = ρ′(y) (8) - (2) + (6)

• Se y = x então ρ′(x) = JeKρ e ρ′(y) �Σ Γ′(y) (9) - (2) + (3) + (6) + Lemma WTE-Safety

• ∀y∈dom(Γ′) ρ
′(y) �Σ Γ′(y) (10) - (8) + (9) + hyp.3

• ρ′ �Σ′ Γ′ (11) - (2) + (10)

• h′, ρ′ � Σ′,Γ′ (12) - (7) + (11)

• g,∆ ` {Γ′} s′ {Γf} (10) - (2) + (6)

[ASSIGNMENT FROM FIELD] Suppose that x := e.f (hyp.4). We have that:

• Γ`e:{fi:τi|ki=1,f :τ}∗ Closed(τ)

g,∆`{Γ}x:=e.f{Γ[x 7→τ]} is applied (1) - hyp.1 + hyp.4

40

• Σ′ = Σ, h′ = h, ρ′ = ρ[x 7→ h(JeKρ, f)], s′ = skip (2) - hyp.2 + hyp.4

• Γ ` e : Γ ` e : {fi : τi|ki=1, f : τ}∗ (3) - (1)

• h(JeKρ, f) �Σ τ (4) - (2) + (3) + hyp.3 + Lemma WTE-Safety

• Γf = Γ[x 7→ τ] (5) - (1)

• Taking Γ′ = Γf = Γ[x 7→ τ] (6) - (4)

• h′ � Σ′ (7) - (2) + hyp.3

• ∀y∈dom(ρ),y 6=x Γ(y) = Γ′(y) e ρ(y) = ρ′(y) (8) - (2) + (6)

• Se y = x então ρ′(x) = h(JeKρ, f) e ρ′(y) �Σ Γ′(y) (9) - (2) + (4) + (6)

• ∀y∈dom(Γ′) ρ
′(y) �Σ Γ′(y) (10) - (8) + (9) + hyp.3

• ρ′ �Σ′ Γ′ (11) - (2) + (10)

• h′, ρ′ � Σ′,Γ′ (12) - (7) + (11)

• g,∆ ` {Γ′} s′ {Γf} (13) - (2) + (6)

[FIELD ASSIGNMENT OPEN] Suppose that s = x.f := e (hyp.4) and bΣ(JxKρ)c = ◦ (hyp.5).

• 〈Σ, h, ρ, x.f := e〉 →i 〈Σ′, h[(l, f) 7→ v], ρ, skip〉 (1) - hyp.2 + hyp.4 + hyp.5

• JxKρ = l (2) - (1)

• JeKρ = v (3) - (1)

• τ = TypeΣ(v) (4) - (1)

• Σ′ = Σ[l 7→ Σ(l)[f 7→ τ]], h′ = h[(l, f) 7→ v], ρ′ = ρ, s′ = skip (5) - (1)

• ClosedΣ(v) (6) - (1)

• l �Σ Γ(x) (7) - hyp.3 + (2) + Lemma WTE-Safety

• bΓ(x)c = ◦ (8) - hyp.5 + (7)

We have two cases to consider:

Case (l, f) /∈ dom(h) (hyp.6):

• f /∈ dom(Σ(l)) (9.1.1) - hyp.3 + hyp.6

• f /∈ dom(Γ(x)) (9.1.2) - (9.1.1)

•
Γ`e:τe Γ(x)={fi:τi|ki=1}

◦,∀i∈{1,...,k}f 6=fi
g,∆`{Γ}x.f :=e{Γ[x 7→{fi:τi|ki=1,f :τe}◦]}

is applied (9.1.3) - (8) + (9.1.2) + hyp.1

• Γ ` e : τe (9.1.4) - (9.1.3)

• Γ(x) = {fi : τi|ki=1}◦ (9.1.5) - (9.1.3)

• Γf = Γ[x 7→ {fi : τi|ki=1, f : τe}◦] (9.1.6) - (9.1.3)

• v �Σ τe (9.1.7) - (3) + (9.1.4) + hyp.3 + Lemma WTE-Safety

• τe = τ (9.1.9) - (9.1.7) + (4) + Lemma Satisfaction Uniqueness

• h′ � Σ′ (9.1.10) - (5) + (6) + (9.1.8) + hyp.3 + hyp.5 + NAOO + Lemma Heap Update

• Γf = Γ[x 7→ Γ(x)[f 7→ τ]] (9.1.11) - (9.1.5) + (9.1.6) + (9.1.9)

• Taking Γ′ = Γf = Γ[x 7→ Γ(x)[f 7→ τ]] (9.1.12) - (9.1.11)

41

• ρ′ �Σ′ Γ′ (9.1.13) - (5) + (6) + (9.1.12) + hyp.3 + hyp.5 + NAOO2 + Lemma Store Update

• h′, ρ′ � Σ′,Γ′ (9.1.13) - (9.1.10) + (9.1.12)

• g,∆ ` {Γ′} s′ {Γf} (9.1.14) - (5) + (9.1.11)

Case (l, f) ∈ dom(h) (hyp.6):

• f ∈ dom(Σ(l)) (9.2.1) - hyp.3 + hyp.6

• f ∈ dom(Γ(l)) (9.2.2) - (9.2.1)

•
Γ`e:τe Γ(x)={fi:τi|ki=1}

◦,∃j∈{1,...,k}f=fj

g,∆`{Γ}x.f :=e{Γ[x 7→{fi:τi|ki=1,i 6=j
,f :τe}◦]}

is applied. (9.1.3) - (8) + (9.1.2) + hyp.1

• Γ ` e : τe (9.1.4) - (9.1.3)

• Γ(x) = {fi : τi|ki=1}◦ (9.1.5) - (9.1.3)

• Γf = Γ[x 7→ {fi : τi|ki=1,i 6=j , f : τe}◦] (9.1.6) - (9.1.3)

• v �Σ τe (9.1.7) - (3) + (9.1.4) + hyp.3 + Lemma WTE-Safety

• v �Σ τ (9.1.8) - (4)

• τe = τ (9.1.9) - (9.1.7) + (9.1.8) + Lemma Satisfaction Uniqueness

• h′ � Σ′ (9.1.10) - (5) + (6) + (9.1.8) + hyp.3 + hyp.5 + NAOO + Lemma Heap Update

• Γ′f = Γ[x 7→ Γ(x)[f 7→ τ]] (9.1.11) - (9.1.5) + (9.1.6) + (9.1.9)

• Taking Γ′ = Γf = Γ[x 7→ Γ(x)[f 7→ τ]] (9.1.12) - (9.1.11)

• ρ′ �Σ′ Γ′ (9.1.13) - (5) + (6) + (9.1.12) + hyp.3 + hyp.5 + NAOO2 + Lemma Store Update

• h′, ρ′ � Σ′,Γ′ (9.1.14) - (9.1.10) + (9.1.13)

• g,∆ ` {Γ′} s′ {Γf} (9.1.14) - (5) + (9.1.11)

[FIELD ASSIGNMENT CLOSE] Suppose that s = x.f := e (hyp.4) and bΣ(JxKρ)c = • (hyp.5). We have that:

• Γ`e:τe Γ(x)={...,f :τf ,...}• τe=τf
g,∆`{Γ}x.f :=e{Γ} is applied (1) - hyp.1 + hyp.4 + hyp.5

• Γ ` e : τe (2) - (1)

• Γ(x) = {..., f : τf , ...}• (3) - (1)

• τe = τf (4) - (1)

• 〈Σ, h, ρ, x.f := e〉 →i 〈Σ, h[(l, f) 7→ v], ρ, skip〉 (5) - hyp.2 + hyp.4 + hyp.5

• JeKρ = v (6) - (5)

• JxKρ = l (7) - (5)

• Σ(l, f) = TypeΣ(v) (8) - (5)

• h(l, f) = vf (9) - (5)

• Γf = Γ (10) - (1)

• Making Γ′ = Γf = Γ (11) - (10)

• Σ′ = Σ, h′ = h[(l, f) 7→ v], ρ′ = ρ, s′ = skip (12) - (5)

• ρ′ �Σ′ Γ′ (13) - (11) + (12) + hyp.3

We now have two situations to consider to show that ∀l∈dom(Σ)h
′(l) � Σ′(l):

42

• If l̂ 6= l then h′(l̂) = h(l̂) therefore h′(l̂) � Σ′(l̂) (14.1) - (12)

• If l̂ = l we have that: (14.2)

– ∀g∈dom(h)\f : h′(l̂, g) = h(l̂, g) (14.2.2) - (12)

– ∀g∈dom(h)\f : h′(l̂, g) �Σ′ Σ′(l̂, g) (14.2.3) - (12) + (14.2.2)

– v �Σ τe (14.2.4) - (2) + (6)

– v �Σ′ τe (14.2.5) - (8) + (14.2.4)

– v �Σ′ τf (14.2.6) - (4) + (14.2.5)

– h′(l̂, f) �Σ′ Σ′(l̂, f) (14.2.7) - (3) + (12) + (14.2.6)

– h′(l̂) � Σ′(l̂) (14.2.8) - (14.2.1) + (14.2.3) + (14.2.7)

Therefore:

• h′ � Σ′ (15) - (14.1) + (14.2)

• h′, ρ′ � Σ′,Γ′ (16) - (13) + (15)

• g,∆ ` {Γ′} s′ {Γf} (17) - (11) + (12)

[COMMIT] Suppose that s = commit(x)(hyp.4). We have that:

• bΓ(x)c=◦
g,∆`{Γ} commit(x) {Γ[x7→Γ(x)•]} is applied. (1) - hyp.1 + hyp.4

• 〈Σ, h, ρ, commit(x)〉 ⇓i 〈Σ[l 7→ Σ(l)•], h, ρ〉 (2) - hyp.2 + hyp.4

• JxKρ = l (3) - (2)

• bΣ(l)c = ◦ (4) - (2)

• Γf = Γ[x 7→ Γ(l)•] (5) - (1)

• Making Γ′ = Γf = Γ[x 7→ Γ(l)•] (6) - (5)

• Σ′ = Σ[l 7→ Σ(l)•], h′ = h, ρ′ = ρ, s′ = skip (7) - (2)

• h′ � Σ′ (8) - (4) + (7) + hyp.3 + Lemma Heap Close

• ρ′ �Σ′ Γ′ (8) - (3) + (4) + (6) + (7) + hyp.3 + Lemma Store Close

• h′, ρ′ � Σ′,Γ′ (9) - (7) + (8)

• g,∆ ` {Γ′} s′ {Γf} (10) - (5) + (6)

[NEW OBJECT] Suppose that s = x := {}(hyp.4). We have that:

• g,∆ ` {Γ}x := {}{Γ[x 7→ {}◦]} is applied. (1) - hyp.1 + hyp.4

• 〈Σ, h, ρ, x := {}〉 →i 〈Σ′, h′, ρ[x 7→ l], skip〉 (2) - hyp.2 + hyp.4

• l /∈ dom(h) (3) - (2)

• Γf = Γ[x 7→ {}◦] (4) - (1)

• Making Γ′ = Γf = Γ[x 7→ {}◦] (5) - (4)

• Σ′ = Σ[l 7→ {}◦], h′ = h[l 7→ {}], ρ′ = ρ[x 7→ l], s′ = skip (6) - (2)

• h′ � Σ′ (7) - (3) + (6) + hyp.3 + Lemma Heap New

43

• ρ′ �Σ′ Γ′ (8) - (3) + (5) + (6) + hyp.3 + Lemma Store New

• h′, ρ′ � Σ′,Γ′ (9) - (7) + (8)

• g,∆ ` {Γ′} s′ {Γf} (10) - (5) + (6)

[FIELD DELETE] Suppose that s = delete(x)(hyp.4). We have that:

•
Γ(x)={fi:τi|ki=1}

◦,∃j∈{1,...,k}f=fj

g,∆`{Γ}delete x.f{Γ[x 7→{fi:τi|ki=1,i 6=j
}◦]} is applied. (1) - hyp.1 + hyp.4

• 〈Σ, h, ρ, delete(x.f)〉 ⇓i 〈Σ\(l, f), h\(l, f), ρ〉 (2) - hyp.2 + hyp.4

• JxKρ = l (3) - (2)

• Γf = Γ\(x, f) (4) - (2)

• Making Γ′ = Γf = Γ\(x, f) (5) - (2)

• Σ′ = Σ\(l, f), h′ = h\(l, f), ρ′ = ρ, s′ = skip (6) - (2)

• h′ � Σ′ (7) - (6) + hyp.1 + Lemma Heap Delete

• ρ′ �Σ′ Γ′ (8) - (5) + (6) + hyp.1 + Lemma Store Delete

• h′, ρ′ � Σ′,Γ′ (9) - (7) + (8)

• g,∆ ` {Γ′} s′ {Γf} (10) - (5) + (6)

[IF-TRUE] It follows that s = if(e){s1} else {s2} (hyp.4) and JeKρ = true (hyp.5). We have that:

• g,∆`e:bool g,∆`{Γ}s1{Γ1} g,∆`{Γ}s2{Γ2}
g,∆`{Γ}if(e){s1}else{s2}{Γ1uΓ2}

is applied. (1) - hyp.1 + hyp.4

• g,∆ ` {Γ}s1{Γ1} (2) - (1)

• Γf = Γ1 u Γ2 (3) - (1)

• 〈Σ, h, ρ, if(e){s1} else {s2}〉 →i 〈Σ, h, ρ, s1〉 (4) - hyp.2 + hyp.4 + hyp.5

• Σ′ = Σ, h′ = h, ρ′ = ρ, s′ = s1 (5) - (2)

• Making Γ′ = Γ (6)

• h′, ρ′ � Σ′,Γ′ (7) - (5) + (6) + hyp.3

• g,∆ ` {Γ}s1{Γ1 u Γ2} (8) - (2) + Lemma Weakening

• g,∆ ` {Γ′}s1{Γf} (9) - (6) + (8)

[IF-FALSE] It follows that s = if(e){s1} else {s2} (hyp.4) and JeKρ = false (hyp.5). We have that:

• g,∆`e:bool g,∆`{Γ}s1{Γ1} g,∆`{Γ}s2{Γ2}
g,∆`{Γ}if(e){s1}else{s2}{Γ1uΓ2}

is applied. (1) - hyp.1 + hyp.4

• g,∆ ` {Γ}s2{Γ2} (2) - (1)

• Γf = Γ1 u Γ2 (3) - (1)

• 〈Σ, h, ρ, if(e){s1} else {s2}〉 →i 〈Σ, h, ρ, s2〉 (4) - hyp.2 + hyp.4 + hyp.5

• Σ′ = Σ, h′ = h, ρ′ = ρ, s′ = s2 (5) - (2)

• Making Γ′ = Γ (6)

• h′, ρ′ � Σ′,Γ′ (7) - (5) + (6) + hyp.3

• g,∆ ` {Γ}s2{Γ1 u Γ2} (8) - (2) + Lemma Weakening

• g,∆ ` {Γ′}s2{Γf} (9) - (6) + (8)

44

[WHILE] Suppose that s = while(e){s} (hyp.4). We have that:

• g,∆`e:bool g,∆`{Γ}s{Γ}
g,∆`{Γ}while(e){s}{Γ} is applied. (1) - hyp.1 + hyp.4

• g,∆ ` {Γ}s{Γ} (2) - (1)

• g,∆ ` e : bool (3) - (1)

• By derivation, g,∆ ` {Γ} if(e){s;while(e){s}} else {skip} {Γ} (4) - (2) + (3) + hyp.1

g,∆ ` e : bool

g,∆ ` {Γ} s {Γ} g,∆ ` {Γ} while(e){s} {Γ}

g,∆ ` {Γ} s;while(s){s} {Γ} g,∆ ` {Γ} skip {Γ}

g,∆ ` {Γ} if(e){s;while(e){s}} else {skip} {Γ}

• 〈Σ, h, ρ,while(e){s}〉 →i 〈Σ, h, ρ, if(e){s;while(e){s}} else {skip}〉 (5) - hyp.2 + hyp.4

• Σ′ = Σ, h′ = h, ρ′ = ρ, s′ = if(e){s;while(e){s}} else {skip} (6) - (5)

• Γf = Γ (7) - (1)

• Making Γ′ = Γ (8)

• h′, ρ′ � Σ′,Γ′ (9) - (7) + (8) + hyp.3

• g,∆ ` {Γ} if(e){s;while(e){s}} else {skip} {Γ} (10) - (4) + (7) + (8)

[SEQUENCING] Suppose that s = s1; s2 (hyp.4). We have that:

• g,∆`{Γ}s1{Γ1} g,∆`{Γ1}s2{Γ2}
g,∆`{Γ}s1;s2{Γ2}

is applied. (1) - hyp.1 + hyp.4

• g,∆ ` {Γ}s1{Γ1} (2) - (1)

• g,∆ ` {Γ1}s2{Γ2} (3) - (1)

• 〈Σ, h, ρ, s1; s2〉 →i 〈Σ1, h1, ρ1, s
′
1; s2〉 (4) - hyp.2 + hyp.4

• 〈Σ, h, ρ, s1〉 →i 〈Σ1, h1, ρ1, s
′
1〉 (5) - (4)

• Σ′ = Σ1, h
′ = h1, ρ

′ = ρ1, s
′ = s′1; s2 (6) - (4)

• ∃Γ′1 : h1, ρ1 � Σ1,Γ
′
1 ∧ g,∆ ` {Γ′1} s′1 {Γ1} (7) - (2) + (5) + hyp.3 + hyp.ind.

• Taking Γ′ = Γ′1 (8)

• h′, ρ′ � Σ′,Γ′ (9) - (6) + (7) + (8)

• By derivation, g,∆ ` {Γ′} s′ {Γf}

g,∆ ` {Γ′1} s′1 {Γ1} g,∆ ` {Γ1} s2 {Γ2}

g,∆ ` {Γ′1} s′1; s2 {Γ2}

(9) - (3) + (6) + (7) + (8)

45

4.3 Soundness - Progress

In this section we prove that the proposed type system satisfies the progress property with respect

to the small-step operational semantics defined in Section 4.1. Essentially, progress states that if a

statement is typable with respect to a given initial store typing environment, then either it is the skip

statement or it is always possible to perform another computation step in any state satisfying that initial

store typing environment. More formally, if a statement s is typable with respect to a given function g,

typing context ∆ and store typing environments Γ and Γf , i.e. g,∆ ` {Γ} s {Γf}. Then, either s is the

skip statement or it is always possible to perform another computation step in any state (h, ρ) such that

h, ρ � Σ,Γ, for a given heap typing environment Σ. Put formally:

(g,∆ ` {Γ} s {Γf} ∧ h, ρ � Σ,Γ) =⇒ (s = skip ∨ ∃Σ′, h′, ρ′, s′ : 〈Σ, h, ρ, s〉 →i 〈Σ′, h′, ρ′, s′〉) (4.3)

Well-Typed Expressions - Progress In order to establish the progress property of our type system,

we make use of a new auxiliary property named progress of expression typing. To establish this, we

have to prove that if an expression e is given type τe by our type system for expressions in a store typing

environment Γ and if a store ρ satisfies Γ; then the evaluation of e in ρ yields a value v. Lemma 12

formally establishes this property.

Lemma 12 (Well-typed Expressions - Progress). Let e be an expression, τe a type, ρ a store, Σ a heap

typing environment and Γ a store typing environment. Suppose that Γ ` e : τe and ρ �Σ Γ. Then

∃v : JeKρ = v.

Proof. Assume that Γ ` e : τe(hyp.1) and ρ �Σ Γ(hyp.2). Therefore we have that:

Case e is a variable x (hyp.3)

• Γ(x) = τe (1) - hyp.1 + hyp.3

• dom(ρ) = dom(Γ) (2) - hyp.2

• x ∈ dom(ρ) (3) - (1) + (2)

• JeKρ = ρ(e) (4) - (3)

• ∃v : JeKρ = v (5) - (4)

Case e is a value v′ (hyp.3)

• JeKρ = v′ (or false) (1) - hyp.3

• ∃v : JeKρ = v (2) - (1)

Case e is +(e′) (hyp.4)

• ∃τ ′e : Γ ` e′ : τ ′e (1) - hyp.1 + hyp.4

• ∃v′ : Je′Kρ = v′ (2) - (1) + hyp.2 + hyp.ind.

• ∃v′ : J+(e′)Kρ = +(v′) (3) - (2)

• ∃v′ : JeKρ = +(v′) (4) - (3)

• ∃v : JeKρ = v (5) - (4)

46

Case e is +(e1, e2) (hyp.3)

• ∃τe1 , τe2 : Γ ` e1 : τe1 and Γ ` e2 : τe2 (1) - hyp.1 + hyp.4

• ∃v1, v2 : Je1Kρ = v1 and Je2Kρ = v2 (2) - (1) + hyp.2 + hyp.ind.

• ∃v1, v2 : J+(e1, e2)Kρ = +(v1, v2) (3) - (2)

• ∃v1, v2 : JeKρ = +(v1, v2) (4) - (3)

• ∃v : JeKρ = v (5) - (4)

Progress Theorem Theorem 6 states that the proposed type system satisfies the Progress property.

Theorem 6 (Progress). Let g be a function and ∆ a typing context. Let h be a heap, ρ a store, and s

a statement. Suppose that g,∆ ` {Γ} s {Γf} and h, ρ � Σ,Γ. Then either s = skip or ∃Σ′, h′, ρ′, s′ :

〈Σ, h, ρ, s〉 →i 〈Σ′, h′, ρ′, s′〉.

Proof.

Assuming that g,∆ ` {Γ} s {Γf} (hyp.1) and h, ρ � Σ,Γ (hyp.2), we have the following cases:

[SKIP] Suppose that s = skip (hyp.3). So we are in the s = skip case.

[ASSIGNMENT] Suppose that s = x := e (hyp.3). We have that:

• Γ`e:τe Closed(τe)
g,∆`{Γ} x:=e {Γ[x 7→τe]} is applied (1) - hyp.1 + hyp.3

• Γ ` e : τe (2) - (1)

• Closed(τe) (3) - (1)

• ∃v : JeKρ = v (4) - (2) + hyp.2 + Lemma WTE-Progress

• v �Σ τe (5) - (4) + hyp.2 + Lemma WTE-Safety

• ClosedΣ(v) (6) - (2) + (4) + Lemma Closed Values

• 〈Σ, h, ρ, x := e〉 →i 〈Σ, h, ρ[x 7→ v], skip〉 (7) - (4) + (6)

[ASSIGNMENT FROM FIELD] Suppose that s = x := e.f (hyp.3). We have that:

• Γ`e.f :τ Closed(τ)
g,∆`{Γ}x:=e.f{Γ[x 7→τ]} is applied (1) - hyp.1 + hyp.3

• Γ ` e.f : τ (2) - (1)

• Closed(τ) (3) - (1)

• ∃l : JeKρ = l (4) - (2) + hyp.2 + Lemma WTE-Progress

• h(l, f) �Σ τ (5) - (2) + (4) + hyp.2 + Lemma WTE-Safety

• ∃v : v �Σ τ (6) - (5)

• ClosedΣ(v) (7) - (3) + (6)

• 〈Σ, h, ρ, x := e〉 →i 〈Σ, h, ρ[x 7→ v], skip〉 (7) - (2) + (6) + (7)

[FIELD ASSIGNMENT OPEN] Suppose that s = x.f := e (hyp.3) and bΣ(JxKρ)c = ◦ (hyp.4). We have two

cases to consider:

47

•
Γ`e:τe Γ(x)={fi:τi|ki=1}

◦,∀i∈{1,...,k}f 6=fi Closed(τe)

g,∆`{Γ}x.f :=e{Γ[x 7→{fi:τi|ki=1,f :τe}◦]}
or

Γ`e:τe Γ(x)={fi:τi|ki=1}
◦,∃j∈{1,...,k}f=fj Closed(τe)

g,∆`{Γ}x.f :=e{Γ[x 7→{fi:τi|ki=1,i 6=j
,f :τe}◦]}

is applied.

(1) - hyp.1 + hyp.3 + hyp.4

• ∃l : JxKρ = l (2) - (1)

• Γ ` e : τe (3) - (1)

• Closed(τe) (4) - (1)

• ∃v : JeKρ = v (5) - (3) + hyp.2 + Lemma WTE-Progress

• v �Σ τe (6) - (3) + (5) + hyp.2 + Lemma WTE-Safety

• ClosedΣ(v) (7) - (4) + (6) + Lemma Closed Values

• 〈Σ, h, ρ, x.f := e〉 →i 〈Σ′ = Σ[l 7→ Σ(l)[f 7→ τ]], h[(l, f) 7→ v], ρ, skip〉

(8) - (1) + (5) + (7) + hyp.4

[FIELD ASSIGNMENT CLOSE] Suppose that s = x.f := e (hyp.3) and bΣ(JxKρ)c = • (hyp.4). We have that:

• Γ`e:τe Γ(x)={...,f :τf ,...}• τe=τf Closed(τe)

g,∆`{Γ}x.f :=e{Γ} is applied

(1) - hyp.1 + hyp.3 + hyp.4

• ∃l : JxKρ = l (2) - (1)

• Γ ` e : τe (3) - (1)

• Closed(τe) (4) - (1)

• τe = τf (5) - (1)

• ∃v : JeKρ = v (8) - (3) + hyp.2 + Lemma WTE-Progress

• v �Σ τe (9) - (3) + (8) + hyp.2 + Lemma WTE-Safety

• ClosedΣ(v) (10) - (4) + (9) + Lemma Closed Values

• Σ(l, f) = τf = τe (11) - (1) + (2) + (5) + hyp.2

• Σ(l, f) = TypeΣ(v) (12) - (9) + (11)

• (l, f) ∈ dom(h) (13) - (12) + hyp.2

• 〈Σ, h, ρ, x.f := e〉 →i 〈Σ′ = Σ[l 7→ Σ(l)[f 7→ τ]], h[(l, f) 7→ v], ρ, skip〉

(13) - (2) + (8) + (10) + (12) + (13) + hyp.3 + hyp.4

[FIELD DELETE] Suppose that s = delete(x.f) (hyp.3). We have that:

•
Γ(x)={fi:τi|ki=1}

◦,∃j∈{1,...,k}f=fj

g,∆`{Γ}delete x.f{Γ[x 7→{fi:τi|ki=1,i 6=j
}◦]} is applied. (1) - hyp.1 + hyp.3

• ∃l : JxKρ = l (2) - (1)

• bΓ(x)c = ◦ (3) - (1)

• bΣ(l)c = bΓ(x)c (4) - (2) + hyp.2

• bΣ(l)c = ◦ (5) - (1)

• 〈Σ, h, ρ, delete(x.f)〉 →i 〈Σ[l 7→ Σ(l)•], h, ρ, skip〉

(6) - (2) + (5)

[NEW OBJECT] Suppose that s = x := {} (hyp.3). We have that:

48

• g,∆ ` {Γ}x := {}{Γ[x 7→ {}◦]} is applied. (1) - hyp.1 + hyp.3

[COMMIT] Suppose that s = commit(x) (hyp.3). We have that:

• Γ(x)={fi:τi|ki=1}
◦

g,∆`{Γ}commit x{Γ[x 7→{fi:τi|ki=1}
•]

is applied. (1) - hyp.1 + hyp.3

• ∃l : JxKρ = l (2) - (1)

• bΓ(x)c = ◦ (3) - (1)

• bΣ(l)c = bΓ(x)c (4) - (2) + hyp.2

• bΣ(l)c = ◦ (5) - (1)

• 〈Σ, h, ρ, commit(x)〉 →i 〈Σ[l 7→ Σ(l)•], h, ρ, skip〉

(6) - (2) + (5)

[IF] Suppose that s = if(e){s1} else {s2} (hyp.3).

• g,∆`e:bool g,∆`{Γ0}s1{Γ1} g,∆`{Γ0}s2{Γ2}
g,∆`{Γ0}if(e){s1}else{s2}{Γ1uΓ2}

is applied. (1) - hyp.1 + hyp.3

• g,∆ ` e : bool (2) - (1)

We have two cases to consider:

Case e = true (hyp.4)

– 〈Σ, h, ρ, if(e){s1} else {s2}〉 →i 〈Σ, h, ρ, s1〉 (3.1) - hyp.3 + hyp.4

Case e = false (hyp.4)

– 〈Σ, h, ρ, if(e){s1} else {s2}〉 →i 〈Σ, h, ρ, s2〉 (3.2) - hyp.3 + hyp.4

[WHILE] Suppose that s = while(e){s} (hyp.3). We have that:

• 〈Σ, h, ρ,while(e){s}〉 →i 〈Σ, h, ρ, if(e){s;while(e){s}} else {skip}〉 (1) - hyp.3

[SEQUENCING] Suppose that s = s1; s2 (hyp.3). We have that:

• g,∆`{Γ}s1{Γ1} g,∆`{Γ1}s2{Γ2}
g,∆`{Γ}s1;s2{Γ2}

is applied. (1) - hyp.1 + hyp.3

• g,∆ ` {Γ} s1 {Γ1} (2) - (1)

We have two cases to consider:

Case s1 6= skip (hyp.4)

– 〈Σ, h, ρ, s1〉 →i 〈Σ′, h′, ρ′, s′1〉 (3.1.1) - (2) + hyp.2 + hyp.4 + hyp.ind.

– 〈Σ, h, ρ, s1; s2〉 →i 〈Σ′1, h′1, ρ′1, s′1; s2〉 (3.1.2) - (3.1.1)

Case s1 = skip (hyp.4)

– 〈Σ, h, ρ, skip; s2〉 →i 〈Σ, h, ρ, s2〉 (3.2.1) - hyp.4 + hyp.2 + hyp.ind.

49

4.4 Function and Return

In this section, we adapt our small-step semantics and soundness proofs to account for function

calls and return statements. Subsection 4.4.1 introduces the extended small-step semantics; Subsec-

tion 4.4.2 extends the NAOO invariant to call stacks and proves that the extended NAOO invariant is

maintained by the semantics; finally, Subsection 4.4.3 concludes with the extended soundness theo-

rems and respective proofs.

4.4.1 Semantics

In order to extend our small-step semantics to take into account function calls, we rely on the notion of

call stack [16]. Call stacks are used to keep track of the execution context of the calling function. Hence,

when evaluating a function call, we extend the current call stack with a record that book-keeps the calling

context. Conversely, when evaluating a return statement, the semantics discards the current execution

context and recovers the execution context of the calling function (i.e. the function that receives the

returned value) from the call stack. Formally, call stacks are generated by the following grammar:

cs ::= [] | (f, x, ρ, s) :: cs (4.4)

Where :: denotes list concatenation and [] the empty list. Essentially, a call stack is a list of 4-tuples of

the form (f, x, ρ, s), referred to as call stack records, where: (1) f is the identifier of the calling function;

(2) x is the program variable of the calling function to which the result of the current function is to be

assigned; (3) ρ is the store of the calling function; and (4) s is the continuation of the calling function; that

is: the part of the body of the calling function that still remains to be executed once the current function

returns. Given a call stack cs, we use the notation stores(cs) to refer to the corresponding list of stores;

the function stores is inductively defined as follows:

stores(cs) =

 [] if cs = []

ρ :: stores(cs′) if cs = (−,−, ρ,−) :: cs′
(4.5)

We are now at the position to extend our semantic judgement for statements introduced in Sec-

tion 4.1 with support for function calls and return statements. To this end, we have to change the format

of the semantic judgment to 〈g,Σ, h, ρ, cs, s〉 →i 〈g′,Σ′, h′, ρ′, cs′, s′〉, with g and cs representing the cur-

rent function identifier and call stack, and g′ and cs′ representing the resulting function identifier and

call stack.

50

NEW OBJECT
l /∈ dom(h) Σ′ = Σ[l 7→ {}◦] h′ = h[l 7→ {}]
〈g,Σ, h, ρ, cs, x := {}〉 →i 〈g,Σ′, h′, ρ[x 7→ l], cs, skip〉

FUNCTION CALL
JeiKρ = vi|ni=1 ClosedΣ(vi)|ni=1 body(f) = s′ params(f) = xi|ni=1 cs′ = (g, x, ρ, s) :: cs

〈g,Σ, h, ρ, cs, x := f(e1, ..., en); s〉 →i 〈f,Σ, h, [xi 7→ vi|ni=1], cs′, s′〉

RETURN
JeKρ = v cs = (f, x, ρ′, s′) :: cs′

ρ′′ = ρ′[x 7→ v]

〈g,Σ, h, ρ, cs, return(e)〉 →i 〈f,Σ, h, ρ′′, cs′, s′〉

TOP LEVEL RETURN
JeKρ = v cs = [] ρ′′ = ρ[out 7→ v]

〈g,Σ, h, ρ, cs, return(e)〉 →i 〈g,Σ, h, ρ′′, cs, skip〉

Figure 4.2: Small-Step semantics for statements - function call: 〈g,Σ, h, ρ, cs, s〉 →i 〈g′,Σ′, h′, ρ′, cs′, s′〉

Figure 4.2 gives a selection of the extended semantic rules. In particular, it includes the rules that

handle function calls, the return statement, and the new object. Note that the rules introduced in Fig-

ure 4.1 can be straightforwardly adapted to this setting as their current function and call stack do not

change. For instance, the assignment from field rule becomes:

ASSIGNMENT FROM FIELD

JeKρ = l h(l, f) = v ClosedΣ(v)

〈g,Σ, h, ρ, x := e.f, cs〉 →i 〈g,Σ, h, ρ[x 7→ v], skip, cs〉

The rules presented in Figure 4.2 are explained below.

[NEW OBJECT] This rule is applied when assigning a new object to a variable x. The rule finds a

location l which is not in the domain of the heap and adds such location to both heap and heap typing

environment, mapping it to an empty object and to an empty open object type, respectively. The rule

also maps x to l in the store and proceeds to a skip statement.

[FUNCTION CALL] This rule is applied when the first element of a sequence statement is a function call

with closed arguments. The rule starts by evaluating the supplied arguments, obtaining a list of closed

values vi|ni=1. Then, the rule obtains the list of formal parameters of the function f to be executed xi|ni=1

and the statement s′ corresponding to the body of the function. Then a new store is created, mapping the

formal parameters of the function to the supplied arguments, [xi 7→ vi|ni=1]. Afterwards, the rule appends

the current function, g, the variable x, the starting store, ρ and the second element of the sequence

statement, s, to the call stack. Finally, the evaluation proceeds to s′ with current function f .

[RETURN] This rule is applied when a return statement is found and the call stack is not empty. The rule

simply evaluates the expression being returned obtaining a value v. Then, it pops the call stack obtaining

(f, x, ρ′, s′). The transition continues using f as current function, ρ[x 7→ v] as store, s′ as statement and

with the popped call stack, cs′.

[TOP LEVEL RETURN] This rule is applied when a return statement is found and the call stack is empty.

The rule finds the value v to be returned from evaluating the expression e and simply asssigns it to a

51

special variable out in the store. The rule proceeds to a skip statement.

4.4.2 Semantic Properties

Call Stack Satisfiability Just as for the heap and store, we introduce here the notion of call stack

satisfiability. Defined inductively, a call stack with (f, x, ρ, s) at its top is said to satisfy a function g, a

typing context ∆ and a heap typing environment Σ if there exists two store typing environments Γ and Γ′

such that s is typable under f , ∆, Γ and Γ′, and for any value v which satisfies the return type of g, we

have that ρ[x 7→ v] �Σ Γ. Moreover, the popped call stack also needs to satisfy f , ∆ and Γ. The empty

call stack always satisfies any g,∆,Σ.

Definition 10 (Call Stack satisfiability). Given a heap typing environment Σ, a typing context ∆ and a

function g, a call stack cs is said to satisfy g,∆,Σ, written cs � g,∆,Σ, if:

• cs = [] or

• cs = (f, x, ρ, s) :: cs′ such that:

– ∃Γ,Γ′∀v v �Σ ∆r(g)⇒ ρ[x 7→ v] �Σ Γ ∧ f,∆ ` {Γ} s {Γ′}

– cs′ � f,∆,Σ

Where ∆r(g) denotes the return type of g.

Essentially, the call stack satisfiability property guarantees that all the continuations in the current call

stack are typable and that all stores in the current call satisfy the corresponding store typing environment

if the extended with a value of the appropriate type.

No Aliasing for Call Stack (NACS) In order to deal with aliasing and mutation, our type system en-

forces the NAOO property, meaning that only closed objects can be referenced by more than one pointer.

With the addition of the call stack, we have to extend this invariant to take into account the stores that

form the call stack. To this end, we introduce the notion of no aliasing for call stack (NACS).

Definition 11 (No Aliasing for Call Stack). Let cs be a call stack, ρn a store, and Σ a heap typing

environment; cs and ρn satisfy the no aliasing property with respect to Σ, written NACS(Σ, ρn, cs), if:

• stores(cs) = [ρ0, ..., ρn−1]

• ∀l∈Locs ∀x,y∈V ars ∀i,j ρi(x) = ρj(y) = l ∧ i 6= j ⇒ bΣ(l)c = •

Essentially, the NACS property means that only closed objects may be referenced by variables per-

taining to different stores. In other words, if two variables x and y in different stores ρi and ρj reference

the same location l, then the object pointed to by l must be closed.

The proposed type system enforces the NACS invariant. However, such as with the NAOO property,

we do not prove that the type system does enforce the NACS invariant directly. Instead, we instrumented

the operational semantics so that it also enforces the NACS invariant and will later prove that typable

programs cannot be rejected by the semantics for violating the NACS invariant. Lemma 13 proves that

the operational semantics preserve the NACS invariant. In the given proof we consider only the most

significant cases which are the return, functional call, new object and field assignment open.

52

Lemma 13 (NACS Preservation). Let g and f be functions, Σ and Σ′ heap typing environments, Γ and

Γ′ store typing environments, h and h′ heaps, ρ and ρ′ stores, s and s′ statements, and cs and cs′

call stacks. Suppose that 〈g,Σ, h, ρ, cs, s〉 →i 〈f,Σ′, h′, ρ′, cs′, s′〉, h, ρ � Σ,Γ and NACS(Σ, ρ, cs), then

NACS(Σ′, ρ′, cs′).

Proof. The proof follows by induction on the step s.

Therefore, assuming that 〈g,Σ, h, ρ, cs, s〉 →i 〈f,Σ′, h′, ρ′, cs′, s′〉 (hyp.1), h, ρ � Σ,Γ (hyp.2) and (p, cs)

satisfies NACS with respect to Σ(hyp.3) we have the following base cases:

[RETURN] Suppose that s = return(e) (hyp.4). We have that:

• stores(cs′) = (ρ0, ..., ρn−2),Σ′ = Σ, ρ′ = ρn−1 (1) - hyp.1 + hyp.4

• NACS(Σ′, ρ′, cs′) (2) - (1) + hyp.3

[FUNCTION CALL] Suppose that s = x := f(e1, ..., en); s (hyp.4). We have that:

• ρn = ρ, stores(cs′) = (ρ0, ..., ρn−1, ρ),Σ′ = Σ, ρ′ = [xi 7→ JeiKρ|ni=1] (1) - hyp.1 + hyp.4

• ClosedΣ(JeiKρ)|ni=1 (2) - hyp.1 + hyp.4

• bΣ(JeiKρ′)c = • for i ∈ {1, ..., n} (3) - (2)

• NACS(Σ′, ρ′, cs′) (4) - (3) + hyp.3

[NEW OBJECT] Suppose that s = x := {} (hyp.4). We have that:

• stores(cs′) = stores(cs),Σ′ = Σ[l 7→ {}◦], ρ′ = ρ[x 7→ l], l /∈ dom(h) (1) - hyp.1 + hyp.4

Renaming ρ′ as ρn, we have to prove that:

∀l̂,x,y,i,j ρi(x) = ρj(y) = l̂ ∧ i 6= j ⇒ bΣ′(l̂)c = •

• dom(h) = dom(Σ) (2) - hyp.2

• ∀k∈{0,...,n−1}∀z ρk(z) 6= l (3) - (1) + Lemma No Segmentation Fault

Therefore there are two cases to consider:

Case l̂ ∈ dom(h) (hyp.6):

– l̂ 6= l (4.1.1) - hyp.6

– l̂ = ρ(x) = ρ′(x) = ρn(x) (4.1.2) - (1) + (4.1.1) + hyp.5

– ∀l̂,x,y,i,j ρi(x) = ρj(y) = l̂ ∧ i 6= j ⇒ bΣ′(l̂)c = • (4.1.3) - (1) + (4.1.2) + hyp.3

Case l̂ 6∈ dom(h) (hyp.6):

– l̂ = l (4.2.1) - (1) + (2) + hyp.6

– ∀x,y¬∃i,j∈{1,...,n},i 6=j : ρi(x) = ρj(y) = l̂ (4.2.2) - (3) + (4.2.1)

– ∀l̂,x,y,i,j ρi(x) = ρj(y) = l̂ ∧ i 6= j ⇒ bΣ′(l̂)c = • (4.2.3) - (4.2.2)

• NACS(Σ′, ρ′, cs′) (5) - (4.1.3) + (4.2.3)

[FIELD ASSIGNMENT OPEN] Suppose that s = x.f := e (hyp.4) and bΣ(JxKρ)c = ◦ (hyp.5). We have that:

53

• stores(cs′) = stores(cs),Σ′ = Σ[JxKρ 7→ Σ(l)[f 7→ TypeΣ(JeKρ)]], ρ′ = ρ

(1) - hyp.1 + hyp.4 + hyp.5

• If bΣ(l̂)c = •, Σ(l̂) = Σ′(l̂) (2) - (1) + hyp.5

• ∀l̂,x,y,i,j ρi(x) = ρj(y) = l̂ ∧ i 6= j ⇒ bΣ′(l̂)c = • (3) - (2) + hyp.3

• NACS(Σ′, ρ′, cs′) (4) - (1) + (3)

In the presented proof we refer to the fact that there is no segmentation fault, meaning that no store,

including the ones in the call stack, have as an image locations which are not part of the heap. Formally:

Definition 12 (No Segmentation Fault). Let h be a heap, cs a call stack with stores(cs) = (ρ0, ..., ρn−1)

and ρn a store. It is said that there is no segmentation fault if:

• ∀l∈Loc∀k∈{0,...,n} ρk(z) = l⇒ l ∈ dom(h)

Despite not proving this fact directly, our semantics does, in fact, not have segmentation fault as

the store only starts pointing to locations which are already part of the heap. Moreover, our language

does not have garbage collection. When an object is created it stays in the heap forever as the delete

command deletes object fields, not objects themselves.

4.4.3 Soundness

We now prove that our full type system satisfies the Progress and Preservation [17] properties with

respect to the extended operational semantics.

Soundness - Preservation With the introduction of the call stack we have to consider an updated

version of our Preservation theorem. Analogously to the type safety theorem for our big-step semantics

presented in Section 3.5, with the introduction of function calls, we now also require that the global typing

context ∆ types the program p as hypothesis.

Theorem 7 (Soundness - Preservation). Let p be a program containing functions g and f , ∆ a typing

context, Σ and Σ′ heap typing environments, Γ and Γ′ store typing environments. Let h and h′ be

heaps, ρ and ρ′ stores and s and s’ statements. Suppose that g,∆ ` {Γ} s {Γ′}, 〈g,Σ, h, ρ, cs, s〉 →i

〈f,Σ′, h′, ρ′, cs′, s′〉, h, ρ � Σ,Γ, cs � g,∆,Σ and ∆ ` p. Then there exist two typing environments Γ̂ and

Γ̂′ such that the following are true: h′, ρ′ � Σ′, Γ̂; f,∆ ` {Γ̂} s′ {Γ̂′}; and cs′ � f,∆,Σ′.

Proof. The proof follows by induction on the derivation of:

〈g,Σ, h, ρ, cs, s〉 →i 〈f,Σ′, h′, ρ′, cs′, s′〉

Hence, assuming that g,∆ ` {Γ} s {Γ′} (hyp.1), 〈g,Σ, h, ρ, cs, s〉 →i 〈f,Σ′, h′, ρ′, cs′, s′〉 (hyp.2), h, ρ �

Σ,Γ (hyp.3), cs � g,∆,Σ (hyp.4) and ∆ ` p (hyp.5), we have the following base cases:

[RETURN] Suppose that s = return(e) (hyp.6). We have that:

54

• g,∆ ` {Γ} return(e) {Γ} is applied. (1) - hyp.1 + hyp.6

• 〈g,Σ, h, ρ, cs, return(e)〉 →i 〈f,Σ′, h′, ρ′, cs′, s′〉 (2) - hyp.2 + hyp.6

We now have two case to consider:

Case cs = [] (hyp.7)

– Σ′ = Σ, h′ = h, ρ′ = ρ (3.1.1) - (1) + hyp.7

– Γ̂ = Γ (3.1.2) - (2)

– h′, ρ′ � Σ′, Γ̂ (3.1.3) - (3.1.1) + (3.1.2)

– cs′ � f,∆,Σ (3.1.4) - hyp.7

Case cs 6= [] (hyp.7)

– cs = (f, x, ρ′′, s′) :: cs′ (3.2.1) - (2) + hyp.7

– JeKρ = v (3.2.2) - (2) + hyp.7

– Σ′ = Σ, h′ = h, ρ′ = ρ′′[x 7→ v] (3.2.3) - (2) + hyp.7

– Γ ` e : ∆r(g) (3.2.4) - (1)

– h′ � Σ′ (3.2.5) - (3.2.3) + hyp.3

– ∃Γ̂,Γ̂′∀v′ v
′ �Σ ∆r(g)⇒ ρ′′[x 7→ v′] �Σ Γ̂ ∧ f,∆ ` {Γ̂} s′ {Γ̂′} (3.2.6) - (3.2.1) + hyp4

– v �Σ ∆r(g) (3.2.7) - (3.2.2) + (3.2.4) + hyp.3 + Lemma WTE-Safety

– ρ′′[x 7→ v] �Σ Γ̂ ∧ f,∆ ` {Γ̂} s′ {Γ̂′} (3.2.8) - (3.2.6) + (3.2.7)

– ρ′ �Σ Γ̂ ∧ f,∆ ` {Γ̂} s′ {Γ̂′} (3.2.9) - (3.2.3) + (3.2.8)

– h′, ρ′ � Σ′, Γ̂ (3.2.10) - (3.2.5) + (3.2.9)

– cs′ � f,∆,Σ (3.2.11) - (3.2.1) + hyp.4

[FUNCTION CALL] Suppose that s = x := f(e1, ..., en); ŝ (hyp.6). We have that:

• g,∆ ` {Γ} x := f(e1, ..., en); ŝ {Γ′} is applied. (1) - hyp.1 + hyp.5

• g,∆ ` {Γ} x := f(e1, ..., en) {Γ[x 7→ ∆r(f)]} is applied. (2) - (1)

• g,∆ ` {Γ[x 7→ ∆r(f)]} ŝ {Γ′} (3) - (1)

• 〈g,Σ, h, ρ, cs, x := f(e1, ..., en); ŝ〉 →i 〈f,Σ′, h′, ρ′, cs′, s′〉 (4) - hyp.2 + hyp.5

• cs′ = (g, x, ρ, ŝ) :: cs (5) - (4)

• JeiKρ = vi|ni=1 (6) - (4)

• body(f) = s′ (7) - (4)

• params(f) = xi|ni=1 (8) - (4)

• Σ′ = Σ, h′ = h, ρ′ = [xi 7→ vi|ni=1] (9) - (4) + (6) + (8)

• Γ ` ei : ∆i(f)|ni=1 (10) - (2)

• vi �Σ ∆i(f)|ni=1 (11) - (6) + (10) + hyp.3 + Lemma WTE-Safety

• Taking Γ̂ = [xi 7→ ∆i(f)|ni=1] we have that ρ′ �Σ′ Γ̂ (12) - (9) + (11)

• h′ � Σ′ (13) - (9) + hyp.3

55

• h′, ρ′ � Σ′, Γ̂ (14) - (12) + (13)

• ∃Γ̂′ : f,∆ ` {Γ̂} s′ {Γ̂′} (15) - (7) + hyp.6

• cs′ � f,∆,Σ (16) - (5) + (16.1) + (16.2) + hyp.4

Given that cs′ is equal to cs extended with the stack frame (g, x, ρ, ŝ), we have to prove that the continuation

in the new stack frame is typable; more concretely, we have to prove that when assigning a value v′ of the

appropriate type to x, the continuation ŝ is typable under two variable typing environments, Γ and Γ′. Put

formally:

∃Γ,Γ′∀v′ v′ �Σ ∆r(f)⇒ ρ[x 7→ v′] �Σ Γ ∧ g,∆ ` {Γ} ŝ {Γ′}

Taking Γ = Γ[x 7→ ∆r(f)], Γ′ = Γ′ and assuming that v′ �Σ ∆r(f) (hyp.7) we have that:

– ρ[x 7→ v′] �Σ Γ (16.1) - hyp.3 + hyp.7

– g,∆ ` {Γ} ŝ {Γ′} (16.2) - (3)

The remaining cases are essentially similar to what is presented in Theorem 5

We use 〈g,Σ, h, ρ, cs, s〉 →j
i 〈f,Σ′, h′, ρ′, cs′, s′〉 to denote a j-step transition. When j = 1 we sim-

ply write 〈g,Σ, h, ρ, cs, s〉 →i 〈f,Σ′, h′, ρ′, cs′, s′〉 just as before. Thus, we leverage induction to extend

Theorem 7 to its multi-step version given below.

Corollary 1 (N-step Transition Soundness - Preservation). Let p be a program containing functions g

and f , ∆ a typing context, Σ and Σ′ heap typing environments, Γ and Γ′ store typing environments.

Let h and h′ be heaps, ρ and ρ′ stores and s and s’ statements. Suppose that g,∆ ` {Γ} s {Γ′},

〈g,Σ, h, ρ, cs, s〉 →n
i 〈f,Σ′, h′, ρ′, cs′, s′〉, for any n ∈ N, h, ρ � Σ,Γ, cs � g,∆,Σ and ∆ ` p. Then there

exist two typing environments Γ̂ and Γ̂′ such that the following are true: h′, ρ′ � Σ′, Γ̂; f,∆ ` {Γ̂} s′ {Γ̂′};

and cs′ � f,∆,Σ′.

Proof. The proof follows by induction on n. Assuming that g,∆ ` {Γ} s {Γ′} (hyp.1), 〈g,Σ, h, ρ, cs, s〉 →n
i

〈f,Σ′, h′, ρ′, cs′, s′〉 (hyp.2), h, ρ � Σ,Γ (hyp.3), cs � g,∆,Σ (hyp.4) and ∆ ` p (hyp.5), we have the

following:

Case n = 0: It follows that 〈g,Σ, h, ρ, cs, s〉 →0
i 〈f,Σ′, h′, ρ′, cs′, s′〉. In such case, we have that: f =

g,Σ′ = Σ, h′ = h, ρ′ = ρ, cs′ = cs, s′ = s, therefore, by hypothesis, g,∆ ` {Γ} s {Γ′} (hyp.1), cs � g,∆,Σ

(hyp.4) and h, ρ � Σ,Γ (hyp.3).

Case n = k + 1: Note that 〈g,Σ, h, ρ, cs, s〉 →k+1
i 〈f,Σ′, h′, ρ′, cs′, s′〉 is equivalent to 〈g,Σ, h, ρ, cs, s〉 →k

i

〈g,Σ, h, ρ, cs, s〉 (1) and 〈g,Σ, h, ρ, cs, s〉 →i 〈f,Σ′, h′, ρ′, cs′, s′〉 (2), for some g,Σ, h, ρ, cs and s. Applying

the induction hypothesis to hyp.1, (1), hyp.3, hyp.4, and hyp.5, we conclude that there exist Γ̂ and Γ̂′

such that:

h, ρ � Σ, Γ̂ (3) g,∆ ` {Γ̂} s {Γ̂′} (4) cs � g,∆,Σ (5)

Applying Theorem 7 to (4), (2), (3), (5), and hyp.5, we conclude that there exist two typing environments

Γ̂ and Γ̂′ such that the following are true:

h′, ρ′ � Σ′, Γ̂ f,∆ ` {Γ̂} s′ {Γ̂′} cs′ � f,∆,Σ′

56

Soundness - Progress We finish our small-step semantics chapter by extending the Progress the-

orem to the updated transition rules. As in Theorem 7, some hypothesis have to be added. We now

require that the global typing context ∆ types the program p and that the existing call stack satisfies the

current function g, ∆, and the heap typing environment Σ′. Formally:

Theorem 8 (Progress). Let g be a function and ∆ a typing context. Let h be a heap, ρ a store, and s a

statement. Suppose that g,∆ ` {Γ} s {Γf}, h, ρ � Σ,Γ, cs � g,∆,Σ and ∆ ` p. Then either s = skip or

∃f,Σ′, h′, ρ′, cs′, s′ : 〈g,Σ, h, ρ, cs, s〉 →i 〈f,Σ′, h′, ρ′, cs′, s′〉.

Proof. Assuming that g,∆ ` {Γ} s {Γf} (hyp.1) and h, ρ � Σ,Γ (hyp.2), cs � g,∆,Σ (hyp.3) and ∆ ` p

(hyp.4) we have the following cases:

[RETURN] Suppose that s = return(e) (hyp.5). We have that:

• Γ(g)=(τ ′1,...,τ
′
n)→τe Γ`e:τe

g,∆`{Γ}return e{Γ} is applied

(1) - hyp.1 + hyp.5

• Γ ` e : τe (2) - (1)

• ∃v : JeKρ = v (3) - (2) + hyp.2 + Lemma WTE-Progress

There are two cases to consider:

Case cs = [] (hyp.6)

• 〈g,Σ, h, ρ, cs, return(e)〉 →i 〈g,Σ, h, ρ, cs, skip〉 (4.1.1) - hyp.6

Case cs 6= [] (hyp.6)

• 〈g,Σ, h, ρ, (f, x, ρ′, s′) :: cs′, return(e)〉 →i 〈f,Σ, h, ρ′[x 7→ v], cs′, s′〉

(4.2.1) - (3) + hyp.6

[FUNCTION CALL] Suppose that s = x := f(e1, ..., en); ŝ (hyp.5). We have that:

• g,∆`{Γ0}s1{Γ[x 7→τ]} g,∆`{Γ[x 7→τ]}s2{Γ2}
g,∆`{Γ0}s1;s2{Γ2}

is applied. (1) - hyp.1 + hyp.5

• Γ`ei:τi|ni=1 ∆(f)=(τ1,...,τn)→τ Closed(τi)|ni=1
g,∆`{Γ}x:=f(ei|ni=1){Γ[x7→τ]} (2) - (1)

• Γ ` ei : τi|ni=1 (3) - (2)

• ∆(f) = (τ1, ..., τn)→ τ (4) - (2)

• Closed(τi)|ni=1 (5) - (2)

• ∃vi : JeiKρ = vi|ni=1 (6) - (3) + hyp.2 + Lemma WTE-Progress

• vi �Σ τi|ni=1 (7) - (3) + (6) + hyp.2 + Lemma WTE-Safety

• 〈g,Σ, h, ρ, cs, x := f(e1, ..., en); s〉 →i 〈f,Σ, h, [xi 7→ vi|ni=1], (g, x, ρ, s) :: cs, body(f)〉

(6) - (5)

The remaining cases are essentially similar to what is presented in Theorem 6.

57

58

Chapter 5

Related Work

The research literature covers a wide variety of program analysis techniques for JavaScript, such

as: type systems [18, 19], abstract interpreters [20], points-to analyses [21], program logics [14, 22],

operational semantics [23–25], just to mention a few. We focus our analysis of the related work on type

systems for JavaScript-like languages.

Thiemann [9] was the first to propose a type system for a subset of JavaScript. While this type sys-

tem considered some of the dynamic aspects of JavaScript, such as extensible objects, dynamic func-

tion calls, and type coercions, it also ignored various important aspects of the language, most notably

JavaScript’s prototype-based inheritance mechanism. Importantly, the type system proposed by Thie-

mann is flow-insensitive, meaning that variables and object fields are not allowed to change type over

time. To overcome this issue, Anderson et al. [26] later proposed a type system that allows JavaScript

objects to evolve in a controlled manner. The key idea behind this work is to classify object fields as

potential or definite; potential fields can have their types change while definite fields cannot. The idea of

potential/definite fields is reminiscent of our open/closed objects. These two strategies have, however,

different trade-offs with both being able to typecheck legal programs that are rejected by the other.

Later, Jensen et al. [27] proposed the first sound type analysis for real JavaScript code, called TAJS.

The proposed analysis is flow-sensitive, allowing the types of variables and object fields to change over

time, and based on abstract interpretation [28]. The main contribution of this analysis is the design of

a complex lattice to reason about unary and binary operations in JavaScript, which takes into account

JavaScript’s implicit type coercions.

The TypeScript programming language [8] was designed with the goal of adding optional types to

JavaScript, taking opportunity of JavaScript’s flexibility, while at the same time providing some of the

advantages of statically typed languages, such as informative compiling errors and automatic code com-

pletion. Client-side JavaScript programs make extensive use of external APIs that are not available for

static typing, thus the analysis of TypeScript programs requires the specification of interface declarations

for the external libraries that a program may use. However, interface declarations are humanly written

and not necessarily by the authors of the libraries, therefore leaving room for errors that can compromise

the soundness of the typing process. To solve this program, Feldthaus et al. [29] proposed a method for

59

checking the correction of TypeScript declaration files with respect to JavaScript library implementations.

More recently, some type systems were developed with the objective of enabling efficient ahead-of-

time compilation for JavaScript. The first purposed work with this objective was from Choit et al. [30]

which supports prototype-based inheritance, structural subtyping, and method updates. Later on, Chan-

dra et al. [10] expanded on this work and incorporated additional annotations, thus enabling the type

system to better differentiate between readable and writable object fields.

In the rest of the chapter, we provide a detailed discussion of the papers that are closest to our work

and which guided the design of our type system. The papers are presented in chronological order.

Towards a Type System for Analyzing JavaScript Programs

Thiemann [9] presents the first published sound type system for a subset of JavaScript. This type

system supports singleton types, subtyping, and first-class methods, and guarantees that:

• the first sub-expression of a function call or a new expression always evaluates to a function;

• there are no null pointer dereferences, i.e. when accessing a field of an object, the expression that

denotes the object does not evaluate to the null object or the value undefined;

• arithmetic operators are not applied to objects (unless the object is a wrapper for a number);

• there are no implicit type coercions, meaning that primitive types are not implicitly converted to

object types.

Importantly, this type system does not support prototype inheritance, making it considerably simpler

than its successors.

Object types, written as Obj(τ)(x1 : τ1, ..., xn : τn)(τ ′), include a row type, (x1 : τ1, ..., xn : τn),

mapping the fields of the object to their corresponding types and a default type τ ′ denoting the type of all

fields not mentioned explicitly in the row type. Additionally, object types include a special feature type τ ,

indicating if the object is a wrapper for a primitive value or a function. If that is not the case, the feature

type τ is set to undefined. For instance, the object {x : 2, y : ”foo”} has type Obj(undefined)(x :

number, y : string)(undefined). Note that we set the default type to undefined to indicate that objects

with this type only have the fields x and y; hence, the result of inspecting any other field, say z, is the

value undefined.

To better illustrate the usage of feature types, consider the example below:
1 var a = new String("black hole")

2 a.x = 51

3 a.x //OK

1 var b = "black hole"

2 b.x = 51

3 b.x //BAD

In the second example, JavaScript creates a string b, and then tries to assign a value to its field

x. Since b has type string it cannot have fields, thus JavaScript creates a wrapper object around b

and assigns the value 51 to its field x. Despite this, the newly created wrapper object will be garbage-

collected immediately after, as b is still bound to the primitive string ”black hole” instead of the newly

created wrapper object. Since b is still a primitive string, it does not contain the field x; hence, the

inspection of this field yields the value undefined. The same behavior does not happen in the first

60

example, which explicitly creates a string object in the first line. Hence, the assignment of value 51 to

field x works as usual, with no need for creating a wrapper object, and the following field look up also

yields the value 51. The type system proposed by Thiemann prevents implicit coercions, disallowing the

second example. Below we will explain how.

In the first example, the string object created in the first line has type:

Obj(String)(x : number)(undefined)

Where the feature type is String and the row type contains the field x wit type number. Hence, the

assignment in the second line is allowed to go through, given that the value 51 has type number. In

contrast, the type system blocks the field assignment of the second example, b.x = 51, because b has

type string, instead of being an object type.

Towards Type Inference for JavaScript

The authors of [26] present a formalism for an object oriented language JS0, based on JavaScript.

The authors define an operational semantics, a type inference algorithm and a sound static type system

for JS0, making use of structural types. The proposed type system supports: recursive types, subtyping,

and allows objects to evolve in a controlled manner by marking their fields as potential or definite. This

field marking strategy uses a similar idea to our open/closed objects: each object’s field is marked as

potential or definite, and, by tracking this, the object may see some evolution. This evolution is only

possible for potential fields, which become definite when they are assigned a value. This constitutes yet

another approach to handling one of the major difficulties of typing mutable objects: when we update an

object field with a value of a different type the type of the object changes.

To better understand these ideas consider the following example from the paper:

1 function Date(x):(t1 * number -> t2) {

2 this.mSec = x; this.add = addFn; this;

3 }

4 function addFn(x):(t2 * t2 -> t2) {

5 this.mSec = this.mSec + x.mSec; this;

6 }

7 //Main

8 t2 x = new Date(1000);

9 t2 y = new Date(100);

10 x.add(y);

Where t1 = [mSec : (number, ◦), add : ((t2 × t2 → t2), ◦)] and t2 = µ α.[mSec : (number, •), add :

((α × α → α), •)]. As annotated, the function Date has type t1 × number → t2, meaning that: (1) the

receiver object has type t1 (recall that the receiver object is the object bound to the keyword this); (2)

the function receives an argument of type number; (3) and the return value has type t2. In turn, the

function addFn has type t2 × t2 → t2, meaning that its receiver object, argument and return value all

have type t2. In t1 the associated fields are still marked as potential (◦) but in t2, as they get assigned

inside the function Date, they become definite (•). Once a field becomes definite, its type can no longer

61

be changed. Furthermore, the type system forbids accesses to potential fields, meaning that, one can

only access a field once it becomes definite.

Despite the similarities between this type system and the one we present, there are some consid-

erable differences. First, we close (i.e. make definite) objects instead of object fields, which requires

less annotations and streamlines the tracking process. Furthermore, this difference in approaches leads

to differences in expressivity; for example, the type system proposed in [26] does not account for field

deletion, while our type system allows for field deletion as long as the corresponding object is still open.

Understanding TypeScript

Designed for the development of large applications, TypeScript is a strongly typed programming lan-

guage that extends JavaScript by adding optional static typing to it. As such, every JavaScript program

is also a TypeScript program. The authors of [8] aim to capture the essence of TypeScript by providing

a precise definition for its associated type system based on a core subset of TypeScript referred to as

Featherweight TypeScript (FTS). More concretely, the authors consider two subsets of TypeScript: a safe

subset, denoted as safeFTS, that is proven to be sound, and an unsafe subset, prodFTS, which is closer

to the full TypeScript language and is shown to be unsound (even when annotations are abundant).

The key difference between TypeScript and the previously presented type systems is the fact that

TypeScript is not aimed at soundness. This choice allows it to be applicable to the vast majority of

JavaScript libraries, which would be difficult to type using traditional type systems.

The key features of TypeScript are the following:

• Full Erasure: TypeScript is converted to JavaScript, therefore its types leave no trace in the

JavaScript emitted by the TypeScript’s transpiler;

• Structural Types: as objects are often built from scratch (and not from classes) in JavaScript struc-

tural types are adopted instead of nominal;

• Unified Object Types: objects, functions, constructors and arrays are all treated as object types;

• Type Inference: type inference is used to minimize the number of type annotations needed to be

provided explicitly;

• Gradual Typing: parts of the program are statically typed, and others are dynamically typed through

the usage of the special type any;

• Downcasting: expressions can be converted from a parent object to a child object when com-

patible. Usually this is compiled to a dynamic check, which is not possible here as TypeScript is

converted to JavaScript;

• Covariance: object subtyping is covariant in the types of the object’s fields. For instance, if τ1 ≤ τ2,

then {f : τ1} ≤ {f : τ2}. This type of subtyping is known to be unsound as we demonstrate below.

Below, we expand on the unsoundness problems introduced by covariant subtyping of object types.

Consider the example below consisting of two interfaces Person and V egetarian.

62

1 interface Person {

2 eats: any,

3 name: string,

4 eat (food : any) :boolean

5 }

1 interface Vegetarian {

2 eats: Vegetable,

3 name: string,

4 eat (food : any) :boolean

5 }

As TypeScript uses covariant subtyping for object types, it considers the type V egetarian to be a

subtype of the type Person, since: V egetable ≤ any, string ≤ string, and (any ⇒ boolean) ≤ (any ⇒

boolean). However, this allows us to break the internal invariants of the class V egetarian as illustrated

by the following example:

1 // Maria is a Vegetarian

2 var p : Person = Maria;

3 p.eats = Meat.beef;

4 p.eat (Meat.beef);

Given that V egetarian is a subtype of Person, the assignment of line 2 typechecks. Hence, the

program is allowed to assign Maria to variable p of type Person. Next, it sets the field eats of p (in

this case, Maria) to Food.Meat and, then, it feeds meat to Maria, clearly breaking the invariant of the

V egetarian type.

Safe & Efficient Gradual Typing for TypeScript

The authors of [31] tackle the lack of soundness present in current solutions to add gradual typing

to JavaScript by proposing a new and practical gradual type system, prototyped for expediency as a

”Safe” compilation mode for TypeScript that enforces stricter static checks and embeds residual runtime

checks in compiled code. Its implementation is fully integrated as a branch of the TypeScript-0.9.5

compiler, which programmers can opt in by providing a flag to the compiler.

Safe TypeScript is composed by two phases. The first phase is the standard TypeScript compilation

process whilst the second phase confirms, soundly, the types inferred before. If none of the phases find a

static error, Safe TypeScript rewrites the program and instruments objects with runtime type information

(RTTI) and checks. This process makes use of two key differentiators:

• Differential subtyping: a form of coercive subtyping that computes the minimum amount of runtime

type information that must be added to each object. Essentially, as tagging an object may be costly,

only dynamically used objects are tagged, and even for those only the parts used in the dynamic

type discipline require tagging.

• Partial Erasure: used to safely and selectively erase type information. Essentially in Safe Type-

Script, any characterizes only values associated with runtime type information, thus the values that

are not associated with RTTI - erased types - are not subtypes of any.

To better understand these ideas consider the following snippet of Safe TypeScript code (left) and its

compiler translation to JavaScript (right) from the paper:

63

1 interface Point { x : number, y : number}

2 interface Circle { center:Point;

radius:number }↪→

3 function copy(p:Point, q:Point) { q.x=p.x;

q.y=p.y; }↪→

4 function f(q:any) {

5 var c = q.center;

6 copy(c, {x:0, y:0});

7 q.center = {x:"bad"}; }

8 function g(circ:Circle) : number {

9 f(circ);

10 return circ.center.x; }

1 RT.reg("Point",{"x":RT.num,"y":RT.num});

2 RT.reg("Circle",{"center":RT.mkRTTI("Point"),

"radius":RT.num});↪→

3 function copy(p, q) { q.x=p.x; q.y=p.y; }

4 function f(q) {

5 var c = RT.readField(q,"center");

6 copy(RT.checkAndTag(c,

RT.mkRTTI("Point")),{x:0,y:0});↪→

7 RT.writeField(q, "center", {x:"bad"});

}↪→

8 function g(circ) {

9 f(RT.shallowTag(circ,

RT.mkRTTI("Circle")));↪→

10 return circ.center.x; }

In the example above, two types are defined (Point and Circle) and three functions (copy, g and f).

Notice that function g provides f with a Circle type, whilst f receives any. The function g is supposed

to return a number, however, circ.center is no longer a Point, since q.center is of another type, and

thus its field x is a string instead of a number. This is a type error, but Safe TypeScript cannot detected

this error statically (nor simple TypeScript), thus the detection is made at runtime. In order to detect

this, Safe TypeScript first transforms interface definitions to calls to RT and follows by using RTTI to

express invariants that must be enforced at runtime. For example, circ must be a Circle and this is

expressed by instrumenting circ with the function RT.shadowTag which maintains RTTI information.

These invariants are propagated throughout the program by the readF ield function, which tags RTTI

information to objects. In this case it indicates that q.center must be a Point. Afterwards, the function

checkAndTag is used to check whether the provided information has the required type, in this case, it

is used to check if c is a supertype for Point, which it is and thus this information is passed as RTTI.

However, the call writeF ield(o, f, v) is used to check whether the value v being written to the field f of

object o is consistent with the existing typing invariants, which is not the case here as {x : bad} cannot

be typed as a Point.

SJS: a Typed Subset of JavaScript with Fixed Object Layout

The authors of [30] present a static type system for a subset of JavaScript that guarantees that

objects have a statically-known layout at allocation time. This type system is used as part of an ahead-

of-time (AOT) compiler for JavaScript that generates efficient code which can run in standard Javascript

engines. This type system supports prototype-based inheritance, structural subtyping, and method

updates. In order to achieve this, the type system uses the three following key ideas:

• Each object is annoted with a row type that maps its fields to their respective types. The row type

reflects the entire prototype chain of an object, meaning that if an object can access a field a with

a given value then the row type of the object must include the field a with its respective type.

• Object types are additionally annotated with a set of owned fields and a set of inheritor-owned

fields. The first correspond to the fields directly defined in the object as opposed to somewhere in

64

its prototype chain. The second correspond to the fields that must also be owned by the inheritors

of the object (the objects that have the current object in their prototype chains). The idea of owned

fields is that an object can only have a field updated if that field is defined in the object itself.

However, the methods defined in an object can be invoked on both that object or on any of its

inheritors. Hence, to guarantee that methods can only change local fields, all fields that might be

updated by the methods of an object must be included in its set of inheritor owned fields. This

enforces that the set of inheritor owned fields is a subset of the set of owned fields.

• The authors distinguish between precise types, which are used when the dynamic type of an

object is known statically, and approximate types, which are used when it is not. An approximate

object type is a supertype of the precise object type with the same fields and the same owned

fields. However, approximated types do not have inheritor owned fields as they cannot be used as

prototypes. The subtyping relation ensures that a precise type can be cast into an abstract type.

To better understand these ideas consider the following examples from the paper:

1 var o1 = { a : 1, f : function (x) { this.a = 2 } }

2 var o2 = { b : 1, __proto__ : o1 }

3 o1.a = 3 //OK

4 o2.a = 2 //BAD

5 o2.f() //BAD

In the example above o1 has type o1 : {a : number, f : number ⇒ void}P ({a,f},{a}), meaning that

a and f are its owned fields and a is its only inheritor owned field; this means that all the inheritors

of o1, such as o2, must own at least the field a in order to update it via the method f . Since o2 has

type o2 : {a : number, b : number, f : number ⇒ void}P ({b},{}), the considered type system blocks the

assignment in line two because o2 does not include the field a, which is the single inheritor owned field

of o1 in order to exclude erroneous executions such as the one illustrated in the example.

Let us now take a closer look at the usage of approximate types. Consider the following example:

1 var o5 = { a : 1, b : 2, f : function (x) { this.a = 2 } }

2 var o6 = { a : 1, b : 3, f : function (x) { this.b = 3 } }

3 o6.f = function (x) { this.b = 4 } // OK

4 var o7 = expr ? o5 : o6

5 o7.f = function (x) { this.b = 4 } // BAD

6 console.log(o7.a); // OK

In this example o5 and o6 both have precise types - o5 : {a : number, b : number, f : number ⇒

void}P ({a,b,f},{a}) and o6 : {a : number, b : number, f : number ⇒ void}P ({a,b,f},{b}). As o7 is the result

of a conditional statement involving o5 and o6, its type will be the least upper bound between the types

of o5 and o6 : {a : number, b : number, f : number ⇒ void}A({a,b,f}). This least upper bound stems from

the fact that the dynamic type of o7 is not known statically, therefore it will have an approximate type with

a set of fields equals to the intersection of owned fields from o5 and o6. Thus the method update in line

5 is forbidden, as one cannot update a method field of an object with an abstract type. In contrast, the

method update in line 3 is allowed to go through, as the object o6 has a precise type. Despite this, the

fields of o7 can still be read.

65

Type Inference for Static Compilation of JavaScript

The authors of [10] present a sound type system and inference algorithm for a subset of JavaScript

that uses lower and upper bound propagation to infer types and discover type errors. In the following we

focus on the type system as the type inference algorithm is out of the scope of this thesis.

Analogously to the type system of the paper presented in the previous section, this type system is

also used to enable an optimizing ahead-of-time (AOT) compiler for JavaScript. It supports prototype-

based inheritance, structural subtyping, recursive types, and first-class methods, and was made to en-

force the following two properties:

• Type Compatibility - different types cannot be assigned to the same variable;

• Access Safety - fields that are neither available locally nor in the prototype chain cannot be read;

and fields that are not locally available cannot be written.

In order to satisfy both of those properties, objects are annotated with four row types: Or, the fields

that can be read, Ow, the fields that can be written, Omr, the fields that may be read by methods

attached to the object and Omw, the fields that may be written by methods attached to the object. The

first two are as expected: Or is the set of fields available locally or in the prototype chain and Ow is

the set of fields available locally. The last two contain the fields that might be read or written through

the use of methods. Moreover object types are annotated with three possible qualifiers: a prototypal

qualifier, P (mr,mw), a non-prototypal concrete qualifier, NC, and a non-prototypal abstract qualifier,

NA. Only objects with prototypal qualifiers can be used as prototypes or have their methods updated,

but have to be converted to non-prototypal concrete first to enable subtyping. The distinction between the

non-prototypal qualifiers, NC and NA, is that objects with concrete qualifiers may have their methods

invoked on them, while objects with abstract qualifiers may not. Object types are written as follows:

O : {〈Or〉|〈Ow〉}P (〈Omr〉,〈Omw〉) if prototypal, or simply O : {〈Or〉|〈Ow〉}N∗ if not.

To better understand these ideas, let us consider the following example from the paper:

1 var v1 = { d : 1, // o1

2 m : function (x) { this.a = x + this.d }}

3 var v2 = { a : 2 } proto v1; // o2

4 v2.m(3); //OK

5 v2.m("foo"); //BAD

6 var v3 = { b : 4 } proto v2; // o3

7 v3.m(4); //BAD

For clarity, each object in the example is annotated with a unique identifier. Below, we explain the

types assigned by the type system to o1, o2, and o3:

• The object o1 has type {〈d : number,m : number ⇒ void〉|〈d,m〉}P (〈d,a〉,〈a〉). As o1 has no proto-

type, its readable fields 〈d,m〉 coincide with its writable fields. As m is the only method attached to

o1, the method-readable fields of o1 will be those read by m and the method-writable fields of o1

will be those written to by m. Hence, o1 has the qualifier P (〈d, a〉, 〈a〉).

66

• The object o2 has type {〈d : number,m : number ⇒ void, a : number〉|〈a〉}P (〈d,a〉,〈a〉). This object

has a single writable field, a, corresponding to the single field that it directly defines. Moreover, as

its prototype is o1, its readable fields include the readable fields of o1, d, and m, besides its own

field a. As m is, by inheritance, the only method attached to o2, the method-readable fields and

method-writable fields of o2 coincide with those of o1.

• The object o3 has type {〈d : number,m : number ⇒ void, a : number, b : number〉|〈b〉}P (〈d,a〉,〈a〉).

This object has a single writable field, b, corresponding to the single field that it directly defines.

Moreover, as its prototype is o2, its readable fields include the readable fields of o2, d, m, and

a, besides its own field b. As m is, by inheritance, the only method attached to o3, the method-

readable fields and method-writable fields of o3 coincide with those of o2. Hence, o3.m(4) cannot

be invoked as the set of writable fields does not contain the set of method-writable fields.

Coming back to the topic of type qualifiers, we can see that all these three objects have the same

prototypal qualifier, P (〈d, a〉, 〈a〉). However, only the type of o2 may be converted to a non-prototypal

concrete type (NC), since it is the only one whose sets of method-read and -write fields are contained

in the corresponding sets of read and write fields.

67

68

Chapter 6

Conclusions

The ECMA-SL project was created with the goal of assisting with the analysis of JavaScript programs

by first compiling the programs to be analysed to the ECMA-SL language. To this end, the ECMA-SL

project includes a compilation tool chain from JavaScript to ECMA-SL, which has at its core a refer-

ence interpreter of the 5th version of the ECMAScript standard called ECMARef5. As the ECMAScript

standard is now at its 12th version, in order for the ECMA-SL project to be relevant for the analysis of

current JavaScript programs, its compilation pipeline must be adapted to the more recent versions of

the ECMAScript standard. To achieve this, one must first adapt the ECMARef5 interpreter that sits at

its core. However, such extension is rendered extremely difficult due to the fact that ECMA-SL is an

untyped language.

This thesis contributes to the overall ECMA-SL project by designing Typed ECMA-SL, a typed version

of ECMA-SL, together with a sound type system for checking Typed ECMA-SL programs. We believe

that the implementation of the proposed system would make ECMA-SL substantially easier to use by

statically detecting a variety of programming errors that would be, otherwise, only detected dynamically

via testing.

In summary, the contributions of this thesis are the following:

Typed ECMA-SL The first contribution of this thesis is the design of Typed ECMA-SL, a typed exten-

sion of ECMA-SL [7]. Whilst doing this extension we aimed to minimize the number of extra annotations

required, thus enabling already proficient developers in ECMA-SL to easily transition to Typed ECMA-SL.

Type System The second contribution of this thesis is the design of a type system for checking Typed

ECMA-SL programs. The purposed type system is both flow-sensitive and sound. Flow-sensitivity

allows for program variables and objects to change their types during execution. Soundness ensures

that well-typed programs cannot go wrong. Soundness is particularly difficult to achieve in the setting

of ECMA-SL due to the dynamicity of the language, which includes extensible objects and the dynamic

deletion of object fields.

69

Soundness Proofs The third contribution of this thesis is the development of two soundness proofs

for the proposed type system: one based on a big-step operational semantics and another one based

on a small-step operational semantics. The two proofs enabled us to better understand the trade-offs

between both types of semantics when proving the soundness of a type system. On the one hand, the

small-step operational semantics is more involved than its big-step version, requiring the definition of

call stacks and an additional invariant for constraining the ways in which call stacks can be manipulated.

On the other hand, the big-step semantics has to model erroneous cases explicitly as they cannot be

otherwise differentiated from non-terminating derivations.

6.1 Future Work

Implementing the type system The clear next step is to implement the proposed type system. With

the implementation of the proposed type system, the ECMARef interpreter can then be extended and

adapted to newer versions of the JavaScript standard.

Enabling Closed Objects to Become Open When a closed object is assigned to one and only one

variable, changing its type has a local impact, therefore it might as well be treated as an open object.

Thus, by introducing a more fine-grained control mechanism over object aliasing, we could potentially

re-open an object after it being closed. For instance, we envisage the introduction of an uncommit

command for opening an object after closing it. This would require further instrumenting the syntax of

types to book-keep the pointers to values of a specific type.

Extending the type system In the near future we would like to extend ECMA-SL with support for

recursive types, union types and subtyping, as these features would be useful for the development of a

typed version of the ECMARef interpreter. For instance, recursive types are essential to model object

types with a recursive structure, such as abstract syntax trees.

70

Bibliography

[1] JavaScript Across the World Wide Web. https://w3techs.com/technologies/details/

cp-javascript/. Accessed: 2021-10-25.

[2] Node.js Increasing Usage. https://w3techs.com/technologies/details/ws-nodejs, . Ac-

cessed: 2021-10-25.

[3] Node.js. https://nodejs.org/en/, . Accessed: 2021-10-25.

[4] F. Quinaz. Precise information flow control for javascript. 2021.

[5] ECMAScript® Language Specification, 5.1 Edition / June 2011. https://262.

ecma-international.org/ecma-262/5.1/ECMA-262.pdf, . Accessed: 2021-10-30.

[6] ECMAScript® Language Specification, 12 Edition / June 2021. https://www.

ecma-international.org/wp-content/uploads/ECMA-262_12th_edition_june_2021.pdf, .

Accessed: 2021-10-30.

[7] L. Loureiro. Ecma-sl - a platform for specifying and running the ecmascript standard. 2021.

[8] G. Bierman, M. Abadi, and M. Torgersen. Understanding typescript. In R. Jones, editor, ECOOP

2014 – Object-Oriented Programming, pages 257–281, Berlin, Heidelberg, 2014. Springer Berlin

Heidelberg. ISBN 978-3-662-44202-9.

[9] P. Thiemann. Towards a type system for analyzing javascript programs. In M. Sagiv, editor, Pro-

gramming Languages and Systems, pages 408–422, Berlin, Heidelberg, 2005. Springer Berlin

Heidelberg. ISBN 978-3-540-31987-0.

[10] S. Chandra, C. S. Gordon, J.-B. Jeannin, C. Schlesinger, M. Sridharan, F. Tip, and Y. Choi.

Type Inference for Static Compilation of JavaScript (Extended Version). arXiv e-prints, art.

arXiv:1608.07261, Aug. 2016.

[11] G. Kahn. Natural semantics. In Proceedings of the 4th Annual Symposium on Theoretical Aspects

of Computer Science, STACS ’87, page 22–39, Berlin, Heidelberg, 1987. Springer-Verlag. ISBN

354017219X.

[12] G. Plotkin. A structural approach to operational semantics. J. Log. Algebr. Program., 60-61:17–139,

07 2004. doi: 10.1016/j.jlap.2004.05.001.

71

https://w3techs.com/technologies/details/cp-javascript/
https://w3techs.com/technologies/details/cp-javascript/
https://w3techs.com/technologies/details/ws-nodejs
https://nodejs.org/en/
https://262.ecma-international.org/ecma-262/5.1/ECMA-262.pdf
https://262.ecma-international.org/ecma-262/5.1/ECMA-262.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-262_12th_edition_june_2021.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-262_12th_edition_june_2021.pdf

[13] https://github.com/tc39/test262. https://github.com/tc39/test262. Accessed: 2021-10-30.

[14] J. F. Santos, P. Gardner, P. Maksimović, and D. Naudžiūnienė. Towards logic-based verification of

javascript programs. In L. de Moura, editor, Automated Deduction – CADE 26, pages 8–25, Cham,

2017. Springer International Publishing. ISBN 978-3-319-63046-5.

[15] J. Fragoso Santos, P. Maksimović, D. Naudžiūnienundefined, T. Wood, and P. Gardner. Javert:

Javascript verification toolchain. Proc. ACM Program. Lang., 2(POPL), Dec. 2017. doi: 10.1145/

3158138. URL https://doi.org/10.1145/3158138.

[16] J. Fragoso Santos, P. Maksimović, S.-E. Ayoun, and P. Gardner. Gillian, part i: A multi-language

platform for symbolic execution. In Proceedings of the 41st ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI 2020, page 927–942, New York, NY,

USA, 2020. Association for Computing Machinery. ISBN 9781450376136. doi: 10.1145/3385412.

3386014. URL https://doi.org/10.1145/3385412.3386014.

[17] A. K. Wright and M. Felleisen. A syntactic approach to type soundness. INFORMATION AND

COMPUTATION, 115:38–94, 1992.

[18] S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for javascript. In J. Palsberg and Z. Su, ed-

itors, Static Analysis, pages 238–255, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN

978-3-642-03237-0.

[19] A. Chaudhuri, P. Vekris, S. Goldman, M. Roch, and G. Levi. Fast and precise type checking for

javascript, 2017.

[20] K. Dewey, V. Kashyap, and B. Hardekopf. A parallel abstract interpreter for javascript. In Proceed-

ings of the 13th Annual IEEE/ACM International Symposium on Code Generation and Optimization,

CGO ’15, page 34–45, USA, 2015. IEEE Computer Society. ISBN 9781479981618.

[21] D. Jang and K.-M. Choe. Points-to analysis for javascript. In Proceedings of the 2009 ACM Sym-

posium on Applied Computing, SAC ’09, page 1930–1937, New York, NY, USA, 2009. Associ-

ation for Computing Machinery. ISBN 9781605581668. doi: 10.1145/1529282.1529711. URL

https://doi.org/10.1145/1529282.1529711.

[22] P. A. Gardner, S. Maffeis, and G. D. Smith. Towards a program logic for javascript. In Proceed-

ings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL ’12, page 31–44, New York, NY, USA, 2012. Association for Computing Machin-

ery. ISBN 9781450310833. doi: 10.1145/2103656.2103663. URL https://doi.org/10.1145/

2103656.2103663.

[23] M. Bodin, A. Charguéraud, D. Filaretti, S. Maffeis, A. Schmitt, and G. Smith. A trusted mechanised

javascript specification. In In Proc. POPL, 2014.

72

https://github.com/tc39/test262
https://doi.org/10.1145/3158138
https://doi.org/10.1145/3385412.3386014
https://doi.org/10.1145/1529282.1529711
https://doi.org/10.1145/2103656.2103663
https://doi.org/10.1145/2103656.2103663

[24] S. Maffeis, J. C. Mitchell, and A. Taly. An operational semantics for javascript. In G. Ramalingam,

editor, Programming Languages and Systems, pages 307–325, Berlin, Heidelberg, 2008. Springer

Berlin Heidelberg. ISBN 978-3-540-89330-1.

[25] D. Park, A. Stefănescu, and G. Roşu. Kjs: A complete formal semantics of javascript. ACM

SIGPLAN Notices, 50:346–356, 06 2015. doi: 10.1145/2813885.2737991.

[26] C. Anderson, P. Giannini, and S. Drossopoulou. Towards type inference for javascript. In A. P.

Black, editor, ECOOP 2005 - Object-Oriented Programming, pages 428–452, Berlin, Heidelberg,

2005. Springer Berlin Heidelberg. ISBN 978-3-540-31725-8.

[27] S. Jensen, A. Møller, and P. Thiemann. Type analysis for javascript. volume 5673, pages 238–255,

01 2009. ISBN 978-3-642-03236-3. doi: 10.1007/978-3-642-03237-0 17.

[28] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of

programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages, POPL ’77, page 238–252, New

York, NY, USA, 1977. Association for Computing Machinery. ISBN 9781450373500. doi: 10.1145/

512950.512973. URL https://doi.org/10.1145/512950.512973.

[29] A. Feldthaus and A. Møller. Checking correctness of typescript interfaces for javascript libraries. In

In Conference on Object Oriented Programming Systems Languages and Applications (OOPSLA,

pages 1–16. ACM, 2014.

[30] W. Choi, S. Chandra, G. C. Necula, and K. Sen. SJS: A type system for javascript with fixed

object layout. In Static Analysis - 22nd International Symposium, SAS 2015, Saint-Malo, France,

September 9-11, 2015, Proceedings, volume 9291 of Lecture Notes in Computer Science, pages

181–198. Springer, 2015.

[31] A. Rastogi, N. Swamy, C. Fournet, G. Bierman, and P. Vekris. Safe & efficient grad-

ual typing for typescript. In POPL ’15 Proceedings of the 42nd Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages 167–180, January 2015.

ISBN 978-1-4503-3300-9. URL https://www.microsoft.com/en-us/research/publication/

safe-efficient-gradual-typing-typescript/.

73

https://doi.org/10.1145/512950.512973
https://www.microsoft.com/en-us/research/publication/safe-efficient-gradual-typing-typescript/
https://www.microsoft.com/en-us/research/publication/safe-efficient-gradual-typing-typescript/

74

Appendix A

Satisfiability Preservation Lemmas

A.1 Field Update

Lemma 14 (Heap Update). Let h and h′ be heaps, Σ and Σ′ heap typing environments, ρ a store, v a

value, l a location and τ a type. Suppose that h � Σ, h′ = h[l 7→ h(l)[f 7→ v]], Σ′ = Σ[l 7→ Σ(l)[f 7→ τ]],

NAOO1(h,Σ), ClosedΣ(v), bΣ(l)c = ◦ and v �Σ τ . Then h′ � Σ′, .

Proof. Assume that h � Σ (hyp.1), h′ = h[l 7→ h(l)[f 7→ v]] (hyp.2), Σ′ = Σ[l 7→ Σ(l)[f 7→ τ]] (hyp.3),

NAOO1(h,Σ) (hyp.4), ClosedΣ(v) (hyp.5), bΣ(l)c = ◦ (hyp.6) and v �Σ τ (hyp.7).

Notice that h′ � Σ′ is equivalent to provent all the following conditions:

1. dom(h′) = dom(Σ′)

2. ∀l∈dom(h′)dom(h′(l)) = dom(Σ′(l))

3. ∀l∈dom(h′)∀f∈dom(h′(l))h
′(l, f) �Σ′ Σ′(l, f)

(1) It comes by:

• dom(h′) = dom(h) and dom(Σ′) = dom(Σ) (2.1.1) - hyp.2 + hyp.3

• dom(h) = dom(Σ) (2.1.2) - hyp.1

• dom(h′) = dom(Σ′) (2.1.3) - (2.1.1) + (2.1.2)

(2) For the second point we have two cases to consider:

Case l̂ = l:

• dom(h′(l̂)) = dom(h(l̂))\{f} and dom(Σ′(l̂)) = dom(Σ(l̂))\{f}

(2.1.1) - hyp.2 + hyp.3

• dom(h(l̂)) = dom(Σ(l̂)) (2.1.2) - hyp.1

• dom(h′(l̂)) = dom(Σ′(l̂)) (2.1.3) - (2.1.1) + (2.1.2)

Case l̂ 6= l

• dom(h′(l̂)) = dom(h(l̂)) and dom(Σ′(l̂)) = dom(Σ(l̂)) (2.1) - hyp.2 + hyp.3

• dom(h(l̂)) = dom(Σ(l̂)) (2.2) - hyp.1

75

• dom(h′(l̂)) = dom(Σ′(l̂)) (2.3) - (2.1) + (2.2)

(3) We have again two cases to consider:

Case (l̂, f̂) = (l, f)

• h′(l̂, f̂) = v (3.1.1) - hyp.2

• Σ′(l̂, f̂) = τ (3.1.2) - hyp.3

Let us now consider the following two subcases:

• τ is a primitive type

– v �Σ′ τ (3.1.3.1.1) - hyp.7

• τ is not a primitive type

– If v 6= l then Σ′(v) = Σ(v) = τ , thus v �Σ′ τ (3.1.3.2.1) - hyp.3 + hyp.7

– If v = l then bΣ(v)c = •, contradiction (3.1.3.2.2) - hyp.5 + hyp.6

– v �Σ′ τ (3.1.3.2.3) - (3.1.3.2.1) + (3.1.3.2.2)

• v �Σ′ τ (3.1.3) - (3.1.3.1.1) + (3.1.3.1.3)

• h′(l̂, f̂) �Σ′ Σ′(l̂, f̂) (3.1.4) - (3.1.1) + (3.1.2) + (3.1.3)

Case (l̂, f̂) 6= (l, f)

• h′(l̂, f̂) = h(l̂, f̂) (3.2.1) - hyp.2

• Σ′(l̂, f̂) = Σ(l̂, f̂) (3.2.2) - hyp.3

Thus, considering two subcases:

• h(l̂, f̂) is a value of primitive type

– h(l̂, f̂) �Σ′ Σ(l̂, f̂) (3.2.3.1.1) - hyp.17

• h(l̂, f̂) is not a value of primitive type

– If h(l̂, f̂) 6= l then Σ′(h(l̂, f̂)) = Σ(h(l̂, f̂)), thus h(l̂, f̂) �Σ′ Σ(l̂, f̂)

(3.2.3.2.1) - hyp.3 + hyp.1

– If h(l̂, f̂) = l then bΣ(h(l̂, f̂))c = ◦, contradiction

(3.2.3.2.2) - hyp.4 + hyp.6

– h(l̂, f̂) �Σ′ Σ(l̂, f̂) (3.2.3.2.3) - (3.2.3.2.1) + (3.2.3.2.2)

• h(l̂, f̂) �Σ′ Σ(l̂, f̂) (3.2.3) - (3.2.3.1.1) + (3.2.3.1.3)

• h′(l̂, f̂) �Σ′ Σ′(l̂, f̂) (3.2.4) - (3.2.1) + (3.2.2) + (3.2.3)

Lemma 15 (Store Update). Let Σ and Σ′ be heap typing environments, Γ and Γ′ store typing environ-

ments, ρ a store, x a variable, f a field and τ a type. Suppose that ρ �Σ Γ, Σ′ = Σ[ρ(x) 7→ Σ(ρ(x))[f 7→

τ]], Γ′ = Γ[x 7→ Γ(x)[f 7→ τ]], bΣ(ρ(x))c = ◦ and NAOO2(ρ,Σ). Then ρ �Σ′ Γ′.

76

Proof. Assume that ρ �Σ Γ(hyp.1), Σ′ = Σ[ρ(x) 7→ Σ(ρ(x))[f 7→ τ]](hyp.2), Γ′ = Γ[x 7→ Γ(x)[f 7→

τ]](hyp.3), bΣ(ρ(x))c = ◦(hyp.4) and NAOO2(ρ,Σ)(hyp.5)

We want to prove that ∀y∈dom(Γ′) ρ(y) �Σ′ Γ′(y). Let us consider two cases:

Case y = x

• Γ′(y) = Γ′(x), ρ(y) = ρ(x) (1)

• Σ(ρ(x)) = Γ(x) (2) - hyp.1

• Σ′(ρ(x)) = Γ′(x) (3) - (2) + hyp.2 + hyp.3

• ρ(x) �Σ′ Γ′(x) (4) - (3)

• ρ(y) �Σ′ Γ′(y) (5) - (1) + (4)

Case y 6= x

• Γ′(y) = Γ(y) (1) - hyp.3

Considering two subcases:

• ρ(y) is a value of primitive type

– ρ(y) �Σ Γ(y) (2.1.1) - hyp.1

– ρ(y) �Σ′ Γ′(y) (2.1.2) - (1) + (2.1.1)

• ρ(y) is not a value of primitive type:

– ρ(y) 6= ρ(x) (2.2.1) - hyp.4 + hyp.5

– Σ′(ρ(y)) = Σ(ρ(y)) (2.2.2) - (2.2.1) + hyp.4

– ρ(y) �Σ Γ(y) (2.2.3) - hyp.1

– Σ(ρ(y)) = Γ(y) (2.2.4) - (2.2.3)

– Σ′(ρ(y)) = Γ(y) (2.2.5) - (2.2.2) + (2.2.4)

– ρ(y) �Σ′ Γ(y) (2.2.6) - (2.2.3) + (2.2.5)

– ρ(y) �Σ′ Γ′(y) (2.1.2) - (1) + (2.2.6)

Lemma 16 (Heap Update - Type Unchanged). Let h be an heap, l a location, f a field, τ a type and Σ a

heap typing environment. Suppose that h(l, f) �Σ τ , v′ �Σ τ , h′ = h[(l, f) 7→ v′] and h � Σ. Then h′ � Σ.

Proof. Assume that h(l, f) �Σ τ (hyp.1), v′ �Σ τ (hyp.2), h′ = h[(l, f) 7→ v′] (hyp.3) and h � Σ(hyp.4).

We start by noticing that h′ � Σ⇔ ∀l̂∈dom(Σ) h
′(l̂) �Σ Σ(l̂).

Then we have to prove that ∀l̂∈dom(Σ) h
′(l̂) �Σ Σ(l̂). Choosing any l̂ there are two cases to consider:

l̂ = l and l̂ 6= l

Case l̂ = l (hyp.5). Admit that, without lose of generality, h(l) = {fi : vi|ni=1, f : v}∗

• h′(l̂) = {fi : vi|ni=1, f : v′}∗ (1) - hyp.3 + hyp.5

• Σ(l̂) = {fi : τi|ni=1, f : τ}∗ (2) - hyp.1 + hyp.4 + hyp.5

77

• ∀1≤i≤nvi �Σ τi (3) - hyp.4

• h′(l̂) �Σ Σ(l̂) (4) - hyp.2 + (1) + (2) + (3)

Case l̂ 6= l(hyp.5)

• h(l̂) = h′(l̂) (1) - hyp.3

• h′(l̂) �Σ Σ(l̂) (2) - hyp.4 + (1)

A.2 Field Delete

Lemma 17 (Heap Delete). Let h and h′ be heaps, Σ and Σ′ heap typing environments, ρ a store, l a

location and f a field. Suppose that h � Σ, h′ = h\(l, f), Σ′ = Σ\(l, f) and NAOO1(h,Σ), bΣ(l)c = ◦.

Then h′ � Σ′.

Proof. Assume that h � Σ (hyp.1), h′ = h\(l, f) (hyp.2), Σ′ = Σ\(l, f) (hyp.3), NAOO1(h,Σ) (hyp.4) and

bΣ(l)c = ◦ (hyp.6).

Notice that h′ � Σ′ is equivalent to provent all the following conditions:

1. dom(h′) = dom(Σ′)

2. ∀l∈dom(h′)dom(h′(l)) = dom(Σ′(l))

3. ∀l∈dom(h′)∀f∈dom(h′(l))h
′(l, f) �Σ′ Σ′(l, f)

(1) It comes by:

• dom(h′) = dom(h) and dom(Σ′) = dom(Σ) (1.1.1) - hyp.2 + hyp.3

• dom(h) = dom(Σ) (1.1.2) - hyp.1

• dom(h′) = dom(Σ′) (1.1.3) - (1.1.1) + (1.1.2)

(2) For the second point we have two cases to consider:

Case l̂ = l:

• dom(h′(l̂)) = dom(h(l̂))\{f} and dom(Σ′(l̂)) = dom(Σ(l̂))\{f}

(2.1.1) - hyp.2 + hyp.3

• dom(h(l̂)) = dom(Σ(l̂)) (2.1.2) - hyp.1

• dom(h′(l̂)) = dom(Σ′(l̂)) (2.1.3) - (2.1.1) + (2.1.2)

Case l̂ 6= l

• dom(h′(l̂)) = dom(h(l̂)) and dom(Σ′(l̂)) = dom(Σ(l̂)) (2.1) - hyp.2 + hyp.3

• dom(h(l̂)) = dom(Σ(l̂)) (2.2) - hyp.1

• dom(h′(l̂)) = dom(Σ′(l̂)) (2.3) - (2.1) + (2.2)

(3) Since (l, f) was deleted we only have one case to consider:

Case (l̂, f̂) 6= (l, f)

78

• h′(l̂, f̂) = h(l̂, f̂) (3.2.1) - hyp.2

• Σ′(l̂, f̂) = Σ(l̂, f̂) (3.2.2) - hyp.3

Thus, considering two subcases:

• h(l̂, f̂) is a value of primitive type

– h(l̂, f̂) �Σ′ Σ(l̂, f̂) (3.2.3.1.1) - hyp.1

• h(l̂, f̂) is not a value of primitive type

– If h(l̂, f̂) 6= l then Σ′(h(l̂, f̂)) = Σ(h(l̂, f̂)), thus h(l̂, f̂) �Σ′ Σ(l̂, f̂)

(3.2.3.2.1) - hyp.3 + hyp.1

– If h(l̂, f̂) = l then bΣ(h(l̂, f̂))c = ◦, contradiction

(3.2.3.2.2) - hyp.4 + hyp.6

– h(l̂, f̂) �Σ′ Σ(l̂, f̂) (3.2.3.2.3) - (3.2.3.2.1) + (3.2.3.2.2)

• h(l̂, f̂) �Σ′ Σ(l̂, f̂) (3.2.3) - (3.2.3.1.1) + (3.2.3.1.3)

• h′(l̂, f̂) �Σ′ Σ′(l̂, f̂) (3.2.4) - (3.2.1) + (3.2.2) + (3.2.3)

Lemma 18 (Store Delete). Let Σ and Σ′ be heap typing environments, Γ and Γ′ store typing environ-

ments, ρ a store, x a variable and f a field. Suppose that ρ �Σ Γ, Σ′ = Σ\(ρ(x), f), Γ′ = Γ\(x, f),

bΣ(ρ(x))c = ◦ and NAOO2(ρ,Σ). Then ρ �Σ′ Γ′.

Proof. Assume that ρ �Σ Γ(hyp.1), Σ′ = Σ\(ρ(x), f)(hyp.2), Γ′ = Γ\(x, f)(hyp.3), bΣ(ρ(x))c = ◦(hyp.4)

and NAOO2(ρ,Σ)(hyp.5)

We want to prove that ∀y∈dom(Γ′) ρ(y) �Σ′ Γ′(y). Let us consider two cases:

Case y = x

• Γ′(y) = Γ′(x), ρ(y) = ρ(x) (1)

• Σ(ρ(x)) = Γ(x) (2) - hyp.1

• Σ′(ρ(x)) = Γ′(x) (3) - (2) + hyp.2 + hyp.3

• ρ(x) �Σ′ Γ′(x) (4) - (3)

• ρ(y) �Σ′ Γ′(y) (5) - (1) + (4)

Case y 6= x

• Γ′(y) = Γ(y) (1) - hyp.3

Considering two subcases:

• ρ(y) is a value of primitive type

– ρ(y) �Σ Γ(y) (2.1.1) - hyp.1

– ρ(y) �Σ′ Γ′(y) (2.1.2) - (1) + (2.1.1)

79

• ρ(y) is not a value of primitive type:

– ρ(y) 6= ρ(x) (2.2.1) - hyp.4 + hyp.5

– Σ′(ρ(y)) = Σ(ρ(y)) (2.2.2) - (2.2.1) + hyp.4

– ρ(y) �Σ Γ(y) (2.2.3) - hyp.1

– Σ(ρ(y)) = Γ(y) (2.2.4) - (2.2.3)

– Σ′(ρ(y)) = Γ(y) (2.2.5) - (2.2.2) + (2.2.4)

– ρ(y) �Σ′ Γ(y) (2.2.6) - (2.2.3) + (2.2.5)

– ρ(y) �Σ′ Γ′(y) (2.1.2) - (1) + (2.2.6)

A.3 Object Creation

Lemma 19 (Heap New). Let h and h′ be heaps, Σ and Σ′ heap typing environments and l a location.

Suppose that h � Σ, h′ = h[l 7→ {}], Σ′ = Σ[l 7→ {}◦] and l /∈ dom(h). Then h′ � Σ′.

Proof. Assume that h � Σ (hyp.1), h′ = h[l 7→ {}] (hyp.2), Σ′ = Σ[l 7→ {}◦] (hyp.3) and l /∈ dom(h)

(hyp.4).

Notice that h′ � Σ′ is equivalent to proving all the following conditions:

1. dom(h′) = dom(Σ′)

2. ∀l∈dom(h′)dom(h′(l)) = dom(Σ′(l))

3. ∀l∈dom(h′)∀f∈dom(h′(l))h
′(l, f) �Σ′ Σ′(l, f)

(1) It comes by:

• dom(h′) = dom(h) ∪ {l} and dom(Σ′) = dom(Σ) ∪ {l} (1.1.1) - hyp.2 + hyp.3

• dom(h) = dom(Σ) (1.1.2) - hyp.1

• dom(h′) = dom(Σ′) (1.1.3) - (1.1.1) + (1.1.2)

(2) For the second point we have two cases to consider:

Case l̂ = l:

• dom(h′(l̂)) = {} and dom(Σ′(l̂)) = {}

(2.1.1) - hyp.2 + hyp.3

• dom(h′(l̂)) = dom(Σ′(l̂)) (2.1.2) - (2.1.1)

Case l̂ 6= l

• dom(h′(l̂)) = dom(h(l̂)) and dom(Σ′(l̂)) = dom(Σ(l̂)) (2.1) - hyp.2 + hyp.3

• dom(h(l̂)) = dom(Σ(l̂)) (2.2) - hyp.1

• dom(h′(l̂)) = dom(Σ′(l̂)) (2.3) - (2.1) + (2.2)

80

(3) We have only one case to consider since dom(h′(l)) = {}:

Case l̂ = l It does not apply since dom(h(l̂)) = dom(Σ(l̂)) = {}

Case l̂ 6= l

• h′(l̂, f̂) = h(l̂, f̂) (3.2.1) - hyp.2

• Σ′(l̂, f̂) = Σ(l̂, f̂) (3.2.2) - hyp.3

Thus, considering two subcases:

• h(l̂, f̂) is a value of primitive type

– h(l̂, f̂) �Σ′ Σ(l̂, f̂) (3.2.3.1.1) - hyp.1

• h(l̂, f̂) is not a value of primitive type

– If h(l̂, f̂) 6= l then Σ′(h(l̂, f̂)) = Σ(h(l̂, f̂)), thus h(l̂, f̂) �Σ′ Σ(l̂, f̂)

(3.2.3.2.1) - hyp.3 + hyp.1

– If h(l̂, f̂) = l , contradiction

(3.2.3.2.2) - hyp.4

– h(l̂, f̂) �Σ′ Σ(l̂, f̂) (3.2.3.2.3) - (3.2.3.2.1) + (3.2.3.2.2)

• h(l̂, f̂) �Σ′ Σ(l̂, f̂) (3.2.3) - (3.2.3.1.1) + (3.2.3.1.3)

• h′(l̂, f̂) �Σ′ Σ′(l̂, f̂) (3.2.4) - (3.2.1) + (3.2.2) + (3.2.3)

Lemma 20 (Store New). Let Σ and Σ′ be heap typing environments, Γ and Γ′ store typing environments,

ρ and ρ′ stores and x a variable. Suppose that ρ �Σ Γ, ρ′ = ρ[x 7→ l], Σ′ = Σ[ρ′(x) 7→ {}◦], Γ′ = Γ[x 7→

{}◦] and l /∈ dom(Σ). Then ρ′ �Σ′ Γ′.

Proof. Assume that ρ �Σ Γ(hyp.1), ρ′ = ρ[x 7→ l](hyp.2) Σ′ = Σ[ρ′(x) 7→ {}◦](hyp.3), Γ′ = Γ[x 7→ {}◦]

and l /∈ dom(Σ)(hyp.5).

We want to prove that ∀y∈dom(Γ′) ρ(y) �Σ′ Γ′(y). Let us consider two cases:

Case y = x

• Γ′(y) = Γ′(x), ρ′(y) = ρ′(x) (1)

• Σ′(ρ′(x)) = Γ′(x) (2) - hyp.2 + hyp.3 + hyp.4

• ρ′(x) �Σ′ Γ′(x) (3) - (2)

• ρ′(y) �Σ′ Γ′(y) (4) - (1) + (3)

Case y 6= x

• Γ′(y) = Γ(y), ρ′(y) = ρ(y) (1) - hyp.2 + hyp.4

Considering two subcases:

• ρ(y) is a value of primitive type

81

– ρ(y) �Σ Γ(y) (2.1.1) - hyp.1

– ρ′(y) �Σ′ Γ′(y) (2.1.2) - (1) + (2.1.1)

• ρ(y) is not a value of primitive type:

– ρ(y) 6= ρ′(x) (2.2.1) - hyp.5

– Σ′(ρ(y)) = Σ(ρ(y)) (2.2.2) - (2.2.1) + hyp.4

– ρ(y) �Σ Γ(y) (2.2.3) - hyp.1

– Σ(ρ(y)) = Γ(y) (2.2.4) - (2.2.3)

– Σ′(ρ(y)) = Γ(y) (2.2.5) - (2.2.2) + (2.2.4)

– ρ(y) �Σ′ Γ(y) (2.2.6) - (2.2.3) + (2.2.5)

– ρ′(y) �Σ′ Γ′(y) (2.1.2) - (1) + (2.2.6)

A.4 Object Closing

Lemma 21 (Heap Close). Let h ba an heap, Σ and Σ′ heap typing environments, ρ a store and l a

location. Suppose that h � Σ, Σ′ = Σ[l 7→ Σ(l)•], NAOO1(h,Σ) and bΣ(l)c = ◦. Then h � Σ′, .

Proof. Assume that h � Σ (hyp.1), Σ′ = Σ[l 7→ Σ(l)•] (hyp.3), NAOO1(h,Σ) (hyp.4) and bΣ(l)c = ◦

(hyp.6).

Notice that h′ � Σ′ is equivalent to provent all the following conditions:

1. dom(h′) = dom(Σ′)

2. ∀l∈dom(h′)dom(h′(l)) = dom(Σ′(l))

3. ∀l∈dom(h′)∀f∈dom(h′(l))h
′(l, f) �Σ′ Σ′(l, f)

(1) It comes by:

• dom(Σ′) = dom(Σ) (2.1.1) - hyp.3

• dom(h) = dom(Σ) (2.1.2) - hyp.1

• dom(h) = dom(Σ′) (2.1.3) - (2.1.1) + (2.1.2)

(2) Consider any l̂ ∈ dom(h), then:

• dom(Σ′(l̂)) = dom(Σ(l̂)) (2.1) - hyp.3

• dom(h(l̂)) = dom(Σ(l̂)) (2.2) - hyp.1

• dom(h(l̂)) = dom(Σ′(l̂)) (2.3) - (2.1) + (2.2)

(3) Let (l̂, f̂) ∈ dom(h). We have two cases to consider:

Case h(l̂, f̂) 6= l:

• h(l̂, f̂) �Σ Σ(l̂, f̂) (3.1.1) - hyp.1

82

• Σ′(l̂, f̂) = Σ(l̂, f̂) (3.1.2) - hyp.2

• h(l̂, f̂) �Σ′ Σ′(l̂, f̂) (3.1.3) - (3.1.1) + (3.1.2)

Case (l̂, f̂) = l

• bΣ′(l̂, f̂)c = •, contradiction (3.2.1) - hyp.4 + hyp.6

Lemma 22 (Store Close). Let Σ and Σ′ be heap typing environments, Γ and Γ′ store typing environ-

ments, ρ a store and x a variable. Suppose that ρ �Σ Γ, Σ′ = Σ[ρ(x) 7→ Σ(ρ(x))•], Γ′ = Γ[x 7→ Γ(x)•],

bΣ(ρ(x))c = ◦ and NAOO2(ρ,Σ). Then ρ �Σ′ Γ′.

Proof. Assume that ρ �Σ Γ(hyp.1), Σ′ = Σ[ρ(x) 7→ Σ(ρ(x))•](hyp.2), Γ′ = Γ[x 7→ Γ(x)•](hyp.3),

bΣ(ρ(x))c = ◦(hyp.4) and NAOO2(ρ,Σ)(hyp.5)

We want to prove that ∀y∈dom(Γ′) ρ(y) �Σ′ Γ′(y). Let us consider two cases:

Case y = x

• Γ′(y) = Γ′(x), ρ(y) = ρ(x) (1)

• Σ(ρ(x)) = Γ(x) (2) - hyp.1

• Σ′(ρ(x)) = Γ′(x) (3) - (2) + hyp.2 + hyp.3

• ρ(x) �Σ′ Γ′(x) (4) - (3)

• ρ(y) �Σ′ Γ′(y) (5) - (1) + (4)

Case y 6= x

• Γ′(y) = Γ(y) (1) - hyp.3

Considering two subcases:

• ρ(y) is a value of primitive type

– ρ(y) �Σ Γ(y) (2.1.1) - hyp.1

– ρ(y) �Σ′ Γ′(y) (2.1.2) - (1) + (2.1.1)

• ρ(y) is not a value of primitive type:

– ρ(y) 6= ρ(x) (2.2.1) - hyp.4 + hyp.5

– Σ′(ρ(y)) = Σ(ρ(y)) (2.2.2) - (2.2.1) + hyp.4

– ρ(y) �Σ Γ(y) (2.2.3) - hyp.1

– Σ(ρ(y)) = Γ(y) (2.2.4) - (2.2.3)

– Σ′(ρ(y)) = Γ(y) (2.2.5) - (2.2.2) + (2.2.4)

– ρ(y) �Σ′ Γ(y) (2.2.6) - (2.2.3) + (2.2.5)

– ρ(y) �Σ′ Γ′(y) (2.1.2) - (1) + (2.2.6)

83

Appendix B

Other Lemmas

Lemma 23 (Weakening Lemma). Let h be an heap, ρ a store, Σ a heap typing environment and Γ and

Γ′ store typing environments. Suppose that h, ρ � Σ,Γ then, for any Γ′ we have that h, ρ � Σ,Γ u Γ′ .

Proof. Assume that h, ρ � Σ,Γ (hyp.1) and let Γ′ be any typping environment.

We start by noticing that h, ρ � Σ,Γ u Γ′ ⇔ ρ �Σ Γ u Γ′ and h � Σ.

Then we have to prove that ρ �Σ Γ u Γ′ and h � Σ.

From hyp.1 we conclude that h � Σ. Now it remains to prove that ρ �Σ ΓuΓ′, which requires proving that

ρ(x) �Σ ΓuΓ′(x) for all x ∈ dom(ΓuΓ′). Observing that ΓuΓ′ ⊆ Γ, it follows that ρ(x) �Σ ΓuΓ′(x).

Lemma 24 (Satisfaction Uniqueness). Let Σ be an heap typing environment, v be a value, and τ1 and

τ2 types. Suppose that v �Σ τ1 and v �Σ τ2. Then τ1 = τ2.

Proof. Assume that v �Σ τ1(hyp.1) and v �Σ τ2(hyp.2). We have four cases to consider:

Case v is a number (hyp.3)

• τ1 = number (1.1) - hyp.1 + hyp.3

• τ2 = number (1.2) - hyp.2 + hyp.3

• τ1 = τ2 (1.3) - (1.1) + (1.2)

Case v is a string (hyp.3)

• τ1 = string (2.1) - hyp.1 + hyp.3

• τ2 = string (2.2) - hyp.2 + hyp.3

• τ1 = τ2 (3.3) - (2.1) + (2.2)

Case v is a boolean (hyp.3)

• τ1 = boolean (3.1) - hyp.1 + hyp.3

• τ2 = boolean (3.2) - hyp.2 + hyp.3

• τ1 = τ2 (3.3) - (3.1) + (3.2)

Case v is a location l (hyp.3)

• τ1 = Σ(l) (4.1) - hyp.1 + hyp.3

• τ2 = Σ(l) (4.2) - hyp.2 + hyp.3

84

• τ1 = τ2 (4.3) - (4.1) + (4.2)

Lemma 25 (Closed values). Let τ be a type, v a value and Σ a heap typing environment. Suppose that

Closed(τ) and v �Σ τ . Then ClosedΣ(v).

Proof. Assume that Closed(τ)(hyp.1) and v �Σ τ(hyp.2). Therefore we have two cases to consider:

Case τ is a primitive type (hyp.3)

• v is of primitive type (1.1) - hyp.2 + hyp.3

• Type(v) = τ

• ClosedΣ(v) (1.2) - (1.1)

Case τ is not a primitive type (hyp.3)

• v is location

• Σ(v) = τ (1.1) - (1hyp.2 + hyp.3

• ClosedΣ(v) (1.2) - (1.1)

85

86

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	1 Introduction
	1.1 Thesis Outline

	2 Typed ECMA-SL
	2.1 Syntax
	2.2 Type System

	3 Big-Step Soundness
	3.1 ECMA-SL State Properties
	3.1.1 State Satisfiability
	3.1.2 No-aliasing Invariant

	3.2 Big-Step Semantics
	3.3 Soundness - Type Safety
	3.3.1 Preservation of the NAOO Invariant
	3.3.2 Well-Typed Expressions
	3.3.3 Satisfiability Preservation
	3.3.4 Soundness - Type Safety

	3.4 Soundness - Fault Avoidance
	3.4.1 Error Executions
	3.4.2 Soundness - Fault Avoidance

	3.5 Function and Return

	4 Small-Step Soundness
	4.1 Small-Step Semantics
	4.2 Soundness - Preservation
	4.3 Soundness - Progress
	4.4 Function and Return
	4.4.1 Semantics
	4.4.2 Semantic Properties
	4.4.3 Soundness

	5 Related Work
	6 Conclusions
	6.1 Future Work

	Bibliography
	A Satisfiability Preservation Lemmas
	A.1 Field Update
	A.2 Field Delete
	A.3 Object Creation
	A.4 Object Closing

	B Other Lemmas

